Skip to main content
Log in

Combined effects of litter features, UV radiation, and soil water on litter decomposition in denuded areas of the arid Patagonian Monte

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

We evaluated the combined effects of litter type, UV radiation, and soil water on litter decomposition processes in denuded areas of the arid Patagonian Monte.

Methods

We conducted a manipulative experiment with litterbags with litter dominated by evergreen shrubs (ES), and litter dominated by perennial grasses and evergreen shrubs (PG) placed on undisturbed upper soil blocks from denuded areas. We subjected soil blocks with litterbags to near ambient and attenuated UV radiation levels, and low and high soil water levels. We evaluated litter mass loss and changes in N, soluble phenolic and lignin contents during 420 days.

Results

PG litter decomposed faster than ES litter, and UV radiation and soil water enhanced decomposition of both litter types. PG litter immobilized N while ES litter released N. During decomposition, soluble phenolic content decreased while lignin content did not vary in both litter types.

Conclusions

Our results highlighted that abiotic and biotic controls differed between mass loss and N release/immobilization. We found additive effects of the studied factors on mass loss while litter chemistry controlled microbial N release or immobilization from decaying litter. Further studies should explore the effects of these factors on species or functional groups shifts in microorganism communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adair EC, Parton WJ, Del Grosso SJ, Silver WI, Harmon ME, Hall SA, Burke IC, Hart SC (2008) Simple three-pool model accurately describes patterns of long term litter decomposition in diverse climates. Glob Change Biol 14:2636–2660

    Google Scholar 

  • Aerts R (1997) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439–449

    Article  Google Scholar 

  • Aerts R, Chapin FS (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30:1–67

    Article  CAS  Google Scholar 

  • Ares JO, Beeskow AM, Bertiller MB, Rostagno CM, Irisarri M, Anchorena J, Defossé G, Merino C (1990) Structural and dynamic characteristics of overgrazed lands of Northern Patagonia, Argentina. In: Breymeyer A (ed) Managed grasslands. Elsevier Sci Amsterdam, The Netherlands, pp. 149–175

    Google Scholar 

  • Arriaga L, Maya Y (2007) Spatial variability in decomposition rates in a desert shrub of Northwestern Mexico. Plant Ecol 189:213–225

    Article  Google Scholar 

  • Austin AT, Ballare CL (2010) Dual role of lignin in plant litter decomposition in terrestrial systems. Proc Natl Acad Scis USA 107:4618–4622

    Article  CAS  Google Scholar 

  • Austin AT, Vivanco L (2006) Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nat 442:555–558

    Article  CAS  Google Scholar 

  • Austin AT, Yahdjian L, Stark JM, Belnap J, Porporato A, Norton U, Ravetta D, Schaeffer SM (2004) Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141:221–235

    Article  PubMed  Google Scholar 

  • Baker NR, Allison SD (2015) Ultraviolet photodegradation facilitates microbial litter decomposition in a Mediterranean climate. Ecol 96:1994–2003

    Article  Google Scholar 

  • Bardgett RD, Wardle DA, GW Y (1998) Linking above-ground and below-ground interactions: how plant responses to foliar herbivory influence soil organisms. Soil Biol Biochem 30(14):1867–1878

    Article  CAS  Google Scholar 

  • Berg B (1986) Nutrient release from litter and humus in coniferous forest soils-a mini review. Scand J for Res 1:359–369

    Article  Google Scholar 

  • Bertiller MB, Ares JO (2011) Does sheep selectivity along grazing path negatively affects biological crusts and soil seed bank in arid shrublands? A case study in the Patagonian Monte, Argentina. J Environ Manag 92:2091–2096

    Article  CAS  Google Scholar 

  • Bertiller MB, Ares JO, Bisigato AJ (2002) Multiscale indicators of land degradation in the Patagonian Monte, Argentina. Environ Manag 5:704–715

    Article  Google Scholar 

  • Bisigato AJ, Bertiller MB (1997) Grazing effects on patchy dryland vegetation in Northern Patagonia. J Arid Environ 36:639–653

    Article  Google Scholar 

  • Bosco T, Bertiller MB, Carrera AL (2015) Micro-environmental conditions affect grass and shrub seedling emergence in denuded areas of the arid Patagonian Monte, Argentina. Flora 210:66–71

    Article  Google Scholar 

  • Boyd CS, Svejcar TJ (2011) The influence of plant removal on succession in Wyoming big sagebrush. J Arid Environ 75:734–741

    Article  Google Scholar 

  • Brandt LA, King JY, Milchunas DG (2007) Effects of ultraviolet radiation on litter decomposition depend on precipitation and litter chemistry in a shortgrass steppe ecosystem. Glob Change Biol 13:2193–2205

    Article  Google Scholar 

  • Brandt LA, Bohnet C, King JY (2009) Photochemically induced carbon dioxide production as a mechanism for carbon loss from plant litter in arid ecosystems. J Geophys Res 114:2156–2202

    Google Scholar 

  • Brandt LA, King JY, Hobbie SE, Milchunas DG, Sinsabaugh RL (2010) The role of photodegradation in surface litter decomposition across a grassland ecosystem precipitation gradient. Ecosyst 13:765–781

    Article  CAS  Google Scholar 

  • Callaway RM (2007) Positive interactions and interdependence in plant communities. Springer, The Netherlands

    Google Scholar 

  • Carrera AL, Bertiller MB (2010) Relationships among plant litter, fine roots and soil organic-C and N across an aridity gradient in Northern Patagonia, Argentina. Eco Sci 17:276–286

    Google Scholar 

  • Carrera AL, Bertiller MB (2013) Combined effects of leaf litter and soil microsite on decomposition process in arid rangelands. J Environ Manag 114:505–511

    Article  CAS  Google Scholar 

  • Carrera AL, Vargas DN, Campanella MV, Bertiller MB, Sain CL, Mazzarino MJ (2005) Soil nitrogen in relation to quality and decomposability of plant litter in the Patagonian Monte, Argentina. Plant Ecol 181:139–151

    Article  Google Scholar 

  • Carrera AL, Bertiller MB, Larreguy C (2008) Leaf litterfall, fine-root production, and decomposition in shrublands with different canopy structure in the Patagonian Monte, Argentina. Plant Soil 311:39–50

    Article  CAS  Google Scholar 

  • Carrera AL, Mazzarino MJ, Bertiller MB, del Valle HF, Carretero EM (2009) Plant impacts on nitrogen and carbon cycling in the Monte Phytogeographical Province, Argentina. J Arid Environ 73:192–201

    Article  Google Scholar 

  • Centro Nacional Patagónico. 2009. Unidad de Investigación de Oceanografía y Meteorología http://www.cenpat.edu.ar

  • Chomel M, Fernandez C, Bousquet-Melou A, Gers C, Monnier Y, Santonja M, Gauquelin T, Gros R, Lecareux L, Baldy V (2014) Secondary metabolites of Pinus halepensis alter decomposer organisms and litter decomposition during afforestation of abandoned agricultural zones. J Ecol 102:411–424

    Article  Google Scholar 

  • Cleveland CC, Liptzin D (2007) C:N:P stoichiometry in soil: is there a "Redfield ratio" for the microbial biomass? Biogeochem 85:235–252

    Article  Google Scholar 

  • Collins SL, Sinsabaugh RL, Crenshaw C, Green L, Porras-Alfaro A, Stursova M, Zeglin LH (2008) Pulse dynamics and microbial processes in aridland ecosystems. J Ecol 96:413–420

    Article  Google Scholar 

  • Coombs J, Hind G, Leegood RC, Tieszen L, Vonshsk A (1985) Analytical techniques. In: Coombs J, Hall DO, Long S P, Scurlock JM (eds) Techniques in bioproductivity and photosynthesis. Pergamon Press, Oxford, pp. 219–228

    Chapter  Google Scholar 

  • Couteaux MM, Bottner P, Berg B (1995) Litter decomposition, climate and litter quality. Tree 10:63–66

    CAS  PubMed  Google Scholar 

  • Day TA, Zhang ET, Ruhland CT (2007) Exposure to solar UV-B radiation accelerates mass and lignin loss of Larrea tridentata litter in the Sonoran Desert. Plant Ecol 193:185–194

    Article  Google Scholar 

  • del Valle HF (1998) Patagonian soils: a regional synthesis. Ecol Austral 8:103–123

    Google Scholar 

  • Duguay KJ, Klironomos JN (2000) Direct and indirect effects of enhanced UV-B radiation on the decomposing and competitive abilities of saprobic fungi. Appl Soil Ecol 14:157–164

    Article  Google Scholar 

  • Fiala ACS, Garman SL, Gray AN (2006) Comparison of five canopy cover estimation techniques in the western oregon cascades. Forest Ecol Manag 232:188–197

    Article  Google Scholar 

  • Gallo M, Sinsabaugh RL, Cabaniss SE (2006) The role of ultraviolet radiation in litter decomposition in arid ecosystems. Appl Soil Ecol 34:82–91

    Article  Google Scholar 

  • Gallo ME, Porras-Alfaro A, Odenbach KJ, Sinsabaugh RL (2009) Photoacceleration of plant litter decomposition in an arid environment. Soil Biol Biochem 41:1433–1441

    Article  CAS  Google Scholar 

  • Gartner TB, Cardon ZG (2004) Decomposition dynamics in mixed-species leaf litter. Oikos 104:230–246

    Article  Google Scholar 

  • Gehrke C, Johanson U, Callaghan TV, Chadwick D, Robinson CH (1995) The impact of enhanced ultraviolet-B radiation on litter quality and decomposition processes in Vaccinium leaves from the Subarctic. Oikos 72:213–222

    Article  Google Scholar 

  • Gholz HL, Wedin DA, Smitherman SM, Harnon ME, Parton WJ (2000) Long-term dynamics of pine and hardwood litter in contrasting environ: toward a glob model of decomposition. Glob Change Biol 6:751–765

    Article  Google Scholar 

  • King JY, Brandt LA, Adair EC (2012) Shedding light on plant litter decomposition: advances, implications and new directions in understanding the role of photodegradation. Biogeochem 111:57–81

    Article  Google Scholar 

  • Kraus TEC, Dahlgren RA, Zasoski RJ (2003) Tannins in nutrient dynamics of forest ecosystems–a review. Plant Soil 256:41–66

    Article  CAS  Google Scholar 

  • Lambers H, Chapin FS III, Pons T (2008) Plant physiological ecology, 2nd edn. Springer Verlag, NY

    Book  Google Scholar 

  • Larreguy C, Carrera AL, Bertiller MB (2014) Effects of long-term grazing disturbance on the belowground storage of organic carbon in the Patagonian Monte, Argentina. J Env Manag 134:47–55

    Article  CAS  Google Scholar 

  • León RJC, Bran D, Collantes M, Paruelo JM, Soriano A (1998) Grandes unidades de vegetación de la Patagonia extra andina. Ecol Austral 8:125–145

    Google Scholar 

  • Lin Y, King JY (2014) Effects of UV exposure and litter position on decomposition in a California grassland. Ecosyst 17:158–168

    Article  CAS  Google Scholar 

  • Liu P, Huanga J, Han X, Suna OJ, Zhou Z (2006) Differential responses of litter decomposition to increased soil nutrients and water between two contrasting grassland plant species of inner Mongolia, China. Appl Soil Ecol 34:266–275

    Article  Google Scholar 

  • Ludwig JA, Tongway DJ (1996) Rehabilitation of semiarid landscapes in Australia II. restoring vegetation patches. Restor Ecol 4:398–406

    Article  Google Scholar 

  • Manzoni S, Trofymow JA, Jackson RB, Porporato A (2010) Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. Ecol Monogr 80:89–106

    Article  Google Scholar 

  • Marcos MS, Bertiller MB, Saraví Cisneros H, Olivera NL (2015) Incremento de la abundancia de bacterias oxidadoras de amoníaco de suelos del Monte Patagónico en respuesta a la humedad del suelo y a la calidad del mantillo vegetal. III CAMAyA, Ciudad Autónoma de Buenos Aires.

  • Mazzarino MJ, Bertiller MB, Sain CL, Satti P, Coronato F (1998) Soil nitrogen dynamics in Northeastern Patagonia steppe under different precipitation regimes. Plant Soil 202:125–131

    Article  CAS  Google Scholar 

  • Meentemeyer V (1978) Microclimate and lignin controls of litter decomposition rates. Ecol 59:465–472

    Article  CAS  Google Scholar 

  • Milchunas DG, Lauenroth WK (1993) Quantitative effects of grazing on vegetation and soils over a glob range of environ. Ecol Monogr 63:327–366

    Article  Google Scholar 

  • Moody SA, Paul ND, Björn LO, Callaghan TV, Lee JA, Manetas Y, Rozema J, Gwynn-Jones D, Johanson U, Kyparissis A, Oudejans AMC (2001) The direct effects of UV-B radiation on Betula pubescens litter decomposing at four European field sites. Plant Ecol 154:29–36

    Article  Google Scholar 

  • Moorhead DL, Reynolds JF (1989) Mechanisms of surface litter mass loss in the Northern Chihuahuan desert: a reinterpretation. J Arid Environ 16:157–163

    Google Scholar 

  • Moorhead DL, Sinsabaugh RL (2006) A theoretical model of litter decay and microbial interaction. Ecol Monogr 76:151–174

    Article  Google Scholar 

  • Mueller-Dombois D, Ellenberg H (1974) Aims and methods of vegetation ecology. John Wiley and Sons, New York

    Google Scholar 

  • Norusis MJ (1997) Advanced statistics. SPSS Inc., Chicago

    Google Scholar 

  • Olivera NL, Prieto LH, Carrera AL, Saraví Cisneros H, Bertiller MB (2014) Do soil enzymes respond to long-term grazing in an arid ecosystem? Plant Soil 378:35–48

    Article  CAS  Google Scholar 

  • Pancotto VA, Sala OE, Cabello M, Lopez NI, Robson TM, Ballaré CL, Caldwell MM, Scopel AL (2003) Solar UV-B decreases decomposition in herbaceous plant litter in Tierra del Fuego, Argentina: potential role of an altered decomposer community. Glob Change Biol 9:1465–1474

    Article  Google Scholar 

  • Parton W, Silver WL, Burke IC, Grassens L, Harmon ME, Currie WS, King JY, Adair EC, Brandt LA, Hart SC, Fasth B (2007) Global-scale similarities in nitrogen release patterns during long-term decomposition. Science 315:361–364

    Article  CAS  PubMed  Google Scholar 

  • Prieto LH, Bertiller MB, Carrera AL, Olivera NL (2011) Soil enzyme and microbial activities in a grazing ecosystem of Patagonian Monte, Argentina. Geoderma 162:281–287

    Article  CAS  Google Scholar 

  • Rostagno CM, Defossé G, del Valle HF (2006) Post fire vegetation dynamics in three rangelands of Northeastern Patagonia, Argentina. Rangel Ecol Manag 59:163–170

    Article  Google Scholar 

  • Rozema J, Tosserams M, Nelissen HJM, van Heerwaarden L, Broekman RA, Flierman N (1997) Stratospheric ozone reduction and ecosystem processes: enhanced UV-B radiation affects chemical quality and decomposition of leaves of the dune grassland species Calamagrostis epigeios. Plant Ecol 128:285–297

    Article  Google Scholar 

  • Schlesinger WH, Hasey MM (1981) Decomposition of chaparral shrub foliage: losses of organic and inorganic constituents from deciduous and evergreen leaves. Ecol 62:62–774

    Google Scholar 

  • Schlesinger WH, Raikes JA, Hartley AE, Cross F (1996) On the spatial patterns of soil nutrients in desert ecosystems. Ecol 77:364–374

    Article  Google Scholar 

  • Smith WK, Gao W, Steltzer H, Wallenstein MD, Tree R (2010) Moisture availability influences the effect of ultraviolet-B radiation on leaf litter decomposition. Glob Change Biol 16:484–495

    Article  Google Scholar 

  • Soil Survey Staff (1998) Keys to soil taxonomy. USDA, Washington, DC

    Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Blackwell, Cambridge, Mass

    Google Scholar 

  • Tongway DJ, Ludwig JA (1996) Rehabilitation of semiarid landscapes in Australia I restoring productive soil patches. Restor Ecol 4:388–397

    Article  Google Scholar 

  • van Soest PJ (1963) Use of detergents in the analysis of fibrous feeds. II A rapid method for the determination of fiber and lignin. J Assoc Off Anal Chem 46:829–835

    Google Scholar 

  • Vanderbilt KL, White CS, Hopkins O, Craig J (2008) Aboveground decomposition in arid environ: results of a long-term study in Central New Mexico. J Arid Environ 72:696–709

    Article  Google Scholar 

  • Vargas DN, Bertiller MB, Ares JO, Carrera AL, Sain CL (2006) Soil C and N dynamics induced by leaf-litter decomposition of shrubs and perennial grasses of the Patagonian Monte. Soil Biol Biochem 38:2401–2410

    Article  CAS  Google Scholar 

  • Wardle DA (2002) Communities and ecosystems: linking the aboveground and belowground components. Princeton University Press, Princeton, New Jersey

    Google Scholar 

  • Waterman PG, Mole S (1994) Analysis of plant phenolic metabolites. Blackwell Scientific Publications, NY

    Google Scholar 

  • Whitford WG (2002) Desertification. In: Whitford WG (ed) Ecology of Desert Systems. Academic Press. San Diego, USA, pp. 275–304

    Chapter  Google Scholar 

  • Whitford WG, Meentemeyer V, Seastedt TR, Cromack K Jr, Crossley DA Jr, Santos P, Todd RL, Waide JB (1981) Exceptions to the AET model: deserts and clear-cut forest. Ecol 62:275–277

    Article  Google Scholar 

  • Zhang D, Hui D, Luo Y, Zhou G (2008) Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J Plant Ecol 2:85–93

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank MJ Mazzarino for her helpful comments and manuscript revision. This work was supported by the National Agency for Scientific, Technological Promotion (PICTs 1349, 1368) and the National Research Council of Argentina (PIPs 112-200801-01664 and 112-201301-00449-CONICET). T. Bosco fellowship is supported by CONICET. Samples processing and chemical analyses were performed in the Laboratorio de Ecología de Pastizales (LAEPA-IPEEC). Recognition is also given to Fundación Patagonia Natural who allowed access to the study area in Refugio de Vida Silvestre La Esperanza, and HM Carrera who allowed access to the study area in Estancia La Elvira. We also thank three anonymous reviewers for their helpful comments on an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomás Bosco.

Additional information

Responsible Editor: Per Ambus.

Electronic supplementary material

ESM 1

(DOCX 1880 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bosco, T., Bertiller, M.B. & Carrera, A.L. Combined effects of litter features, UV radiation, and soil water on litter decomposition in denuded areas of the arid Patagonian Monte. Plant Soil 406, 71–82 (2016). https://doi.org/10.1007/s11104-016-2864-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-016-2864-7

Keywords

Navigation