Skip to main content

Advertisement

Log in

Altered soil carbon dynamics under different land-use regimes in subtropical seasonally-dry forests of central Argentina

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Subtropical seasonally dry forests from South America are now experiencing one of the highest rates of forest-cover change globally. These changes may affect the dynamics of soil organic carbon (SOC) including long-term stabilization processes, with profound consequences for the fertility and carbon storage of these ecosystems.

Methods

In order to explore the effect of different land-use regimes on SOC dynamics, we determined the amount and quality of plant litter, the amount and quality (lignin and carbohydrate content) of SOC, and the soil basal respiration rates across seasonally dry Chaco forests of Argentina.

Results

Changes in land-use regimes significantly reduced the amount of litter but not its quality. As a consequence, the SOC content was also reduced together with SOC quality. Unexpectedly, we found a higher CO2 release per SOC unit in soils with lower amount and quality of SOC.

Conclusions

The results presented here show a clear effect of different land-use regimes on SOC dynamics through a reduction in the amount and quality of SOC. Additionally, we found that potential microbial activity is somehow disconnected from substrate quantity and quality, suggesting that the molecular structure of SOC is not significantly affecting long-term soil stabilization processes across these seasonally-dry ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abril A, Bucher EH (1999) The effects of overgrazing on soil microbial community and fertility in the Chaco dry savannas of Argentina. Appl Soil Ecol 12:159–167. doi:10.1016/S0929-1393(98)00162-0

    Article  Google Scholar 

  • Abril A, Barttfeld P, Bucher EH (2005) The effect of fire and overgrazing disturbes on soil carbon balance in the Dry Chaco forest. For Ecol Manag 206:399–405. doi:10.1016/j.foreco.2004.11.014

    Article  Google Scholar 

  • Bahri H, Dignac M-F, Rumpel C, Rasse DP, Chenu C, Mariotti A (2006) Lignin turnover kinetics in an agricultural soil is monomer specific. Soil Biol Biochem 38:1977–1988. doi:10.1016/j.soilbio.2006.01.003

    Article  CAS  Google Scholar 

  • Bongiovanni MD, Lobartini JC (2006) Particulate organic matter, carbohydrate, humic acid contents in soil macro- and microaggregates as affected by cultivation. Geoderma 136:660–665. doi:10.1016/j.geoderma.2006.05.002

    Article  CAS  Google Scholar 

  • Bonino EE (2006) Changes in carbon pools associated with a land-use gradient in the Dry Chaco, Argentina. For Ecol Manag 223:183–189. doi:10.1016/j.foreco.2005.10.069

    Article  Google Scholar 

  • Borken W, Matzner E (2009) Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Glob Chang Biol 15:808–824. doi:10.1111/j.1365-2486.2008.01681.x

    Article  Google Scholar 

  • Bronick CJ, Lal R (2005) Soil structure and management: a review. Geoderma 124:3–22. doi:10.1016/j.geoderma.2004.03.005

    Article  CAS  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and inference. A practical information-theoretic approach. 2nd ed. Springer Berlin Heidelberg, New York

  • Cabido M, Acosta A, Carranza ML, Diaz S (1992) La vegetación del Chaco Árido en el W de la provincia de Córdoba, Argentina. Doc Phytosociologiques 14:447–456

    Google Scholar 

  • Cassman KG, Wood S (2005) Current state and trends: cultivated systems. In: Hassan R, Scholes R, Ash N (eds) The millennium ecosystem assessment: ecosystems and human well-being. Island Press, Washington, pp 747–794

    Google Scholar 

  • Castellano MJ, Mueller KE, Olk DC, Sawyer JE, Six J (2015) Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept. Glob Chang Biol 21(9):3200–3209. doi:10.1111/gcb.12982

    Article  PubMed  Google Scholar 

  • Cheshire MV (1979) Nature and origin of carbohydrates in soils. Academic, London

    Google Scholar 

  • Collins SL, Sinsabaugh RL, Crenshaw C, Green L, Porras-Alfaro A, Stursova M, Zeglin LH (2008) Pulse dynamics and microbial processes in aridland ecosystems. J Ecol 96:413–420. doi:10.1111/j.1365-2745.2008.01362.x

    Article  Google Scholar 

  • Conti G, Díaz S (2013) Plant functional diversity and carbon storage – an empirical test in semi-arid forest ecosystems. J Ecol 101:18–28. doi:10.1111/1365-2745.12012

    Article  CAS  Google Scholar 

  • Conti G, Pérez-Harguindeguy N, Quètier F, Gorné LD, Jaureguiberry P, Bertone GA, Enrico L, Cuchietti A, Díaz S (2014) Large changes in carbon storage under different land-use regimes in subtropical seasonally dry forests of southern South America. Agric Ecosyst Environ 197:68–76. doi:10.1016/j.agee.2014.07.025

    Article  Google Scholar 

  • Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E (2013) The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob Chang Biol 19:988–995. doi:10.1111/gcb.12113

    Article  PubMed  Google Scholar 

  • Crow SE, Lajtha K, Filley TR, Swanston CW, Bowden RD, Caldwell BA (2009) Sources of plant-derived carbon and stability of organic matter in soil: implications for global change. Glob Chang Biol 15:2003–2019. doi:10.1111/j.1365-2486.2009.01850.x

    Article  Google Scholar 

  • De Baets S, Van Oost K, Baumann K, Meersmans J, Vanacker V, Rumpel C (2012) Lignin signature as a function of land abandonment and erosion in dry luvisols of SE Spain. Catena 93:78–86. doi:10.1016/j.catena.2012.01.014

    Article  Google Scholar 

  • Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2011) InfoStat v.2014 http://www.infostat.com.ar/

  • Don A, Schumacher J, Freibauer A (2011) Impact of tropical land-use change on soil organic carbon stocks – a meta-analysis. Glob Chang Biol 17:1658–1670. doi:10.1111/j.1365-2486.2010.02336.x

    Article  Google Scholar 

  • Don A, Rödenbeck C, Gleixner G (2013) Unexpected control of soil carbon turnover by soil carbon concentration. Environ Chem Lett 11:407–413. doi:10.1007/s10311-013-0433-3

    Article  CAS  Google Scholar 

  • Duboc O, Dignac M-F, Djukic I, Zehetner F, Gerzabek MH, Rumpel C (2014) Lignin decomposition along an Alpine elevation gradient in relation to physicochemical and soil microbial parameters. Glob Chang Biol 20:2272–2285. doi:10.1111/gcb.12497

    Article  PubMed  Google Scholar 

  • Dungait JAJ, Hopkins DW, Gregory AS, Whitmore AP (2012) Soil organic matter turnover is governed by accessibility not recalcitrance. Glob Chang Biol 18:1781–1796. doi:10.1111/j.1365-2486.2012.02665.x

    Article  Google Scholar 

  • Ertel JR, Hedges JI (1984) The lignin component of humic substances: distribution among soil and sedimentary humic, fulvic, and base-insoluble fractions. Geochim Cosmochim Acta 48(10):2065–2074. doi:10.1016/0016-7037(84)90387-9

    Article  CAS  Google Scholar 

  • Garnier E, Cortez J, Billès G, Navas M-LL, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neill C, Toussaint J-PP (2004) Plant functional markers capture ecosystem properties during secondary succession. Ecology 85:2630–2637. doi:10.1890/03-0799

    Article  Google Scholar 

  • Gentile R, Vanlauwe B, Six J (2011) Litter quality impacts short- but not long-term soil carbon dynamics in soil aggregate fractions. Ecol Appl 21:695–703. doi:10.1890/09-2325.1

    Article  PubMed  Google Scholar 

  • Goering HK, Van Soest PJ (1970) Forage fiber analysis:apparatus, reagents, procedures, and some applications. Agric handbook 379. USDA, Washington

    Google Scholar 

  • Gorgas J, Tassile J (2003) Recursos naturales de la provincia de Córdoba. Los suelos. Agencia Córdoba Ambiente SE - INTA EEA, Manfredi, Córdoba

    Google Scholar 

  • Grau HR, Gasparri NI, Aide TM (2005) Agriculture expansion and deforestation in seasonally dry forests of north-west Argentina. Environ Conserv 32:140–148. doi:10.1017/S0376892905002092

    Article  Google Scholar 

  • Grünewald G, Kaiser K, Jahn R, Guggenberger G (2006) Organic matter stabilization in young calcareous soils as revealed by density fractionation and analysis of lignin-derived constituents. Org Geochem 37:1573–1589. doi:10.1016/j.orggeochem.2006.05.002

    Article  Google Scholar 

  • Grünzweig JM, Sparrow SD, Yakir D, Stuart Chapin F (2004) Impact of agricultural land-use change on carbon storage in boreal Alaska. Glob Chang Biol 10:452–472. doi:10.1111/j.1365-2486.2004.00738.x

    Article  Google Scholar 

  • Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: a meta-analysis. Glob Chang Biol 8:345–360. doi:10.1046/j.1354-1013.2002.00486.x

    Article  Google Scholar 

  • Gupta VVSR, Germida JJ (2015) Soil aggregation: influence on microbial biomass and implications for biological processes. Soil Biol Biochem 80:A3–A9. doi:10.1016/j.soilbio.2014.09.002

    Article  CAS  Google Scholar 

  • Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Townshend JRG (2013) High-resolution global maps of 21st-century forest cover change. Science 342:850–853. doi:10.1126/science.1244693

    Article  CAS  PubMed  Google Scholar 

  • Hedges JI, Ertel JR (1982) Characterization of lignin by gas capillary chromatography of cupric oxide oxidation products. Anal Chem 54:174–178. doi:10.1021/ac00239a007

    Article  CAS  Google Scholar 

  • Hedges JI, Blanchette RA, Weliky K, Devol AH (1988) Effects of fungal degradation on the CuO oxidation products of lignin: a controlled laboratory study. Geochim Cosmochim Acta. doi:10.1016/0016-7037(88)90040-3

    Google Scholar 

  • Hoyos LE, Cingolani AM, Zak MR, Vaieretti MV, Gorla DE, Cabido MR (2013) Deforestation and precipitation patterns in the arid Chaco forests of central Argentina. Appl Veg Sci 16:260–271. doi:10.1111/j.1654-109X.2012.01218.x

    Article  Google Scholar 

  • IPCC (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of working groups I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, New York, p 27

    Google Scholar 

  • Jandl R, Lindner M, Vesterdal L, Bauwens B, Baritz R, Hagedorn F, Johnson DW, Minkkinen K, Byrne KA (2007) How strongly can forest management influence soil carbon sequestration? Geoderma 137(3):253–268. doi:10.1016/j.geoderma.2006.09.003

    Article  CAS  Google Scholar 

  • Jolivet C, Angers D, Chantigny M, Andreaux F, Arrouays D (2006) Carbohydrate dynamics in particle-size fractions of sandy spodosols following forest conversion to maize cropping. Soil Biol Biochem 38:2834–2842. doi:10.1016/j.soilbio.2006.04.039

    Article  CAS  Google Scholar 

  • Kimetu JM, Lehmann J, Kinyangi JM, Cheng CH, Thies J, Mugendi DN, Pell A (2009) Soil organic C stabilization and thresholds in C saturation. Soil Biol Biochem 41:2100–2104. doi:10.1016/j.soilbio.2009.07.022

    Article  CAS  Google Scholar 

  • Kögel I (1986) Estimation and decomposition pattern of the lignin component in forest humus layers. Soil Biol Biochem 18(6):589–594. doi:10.1016/0038-0717(86)90080-5

    Article  Google Scholar 

  • Kögel I, Bochter R (1985) Characterization of lignin in forest humus layers by high-performance liquid chromatography of cupric oxide oxidation products. Soil Biol Biochem 17:637–640. doi:10.1016/0038-0717(85)90040-9

    Article  Google Scholar 

  • Kögel-Knabner I (2000) Analytical approaches for characterizing soil organic matter. Org Geochem 31:609–625. doi:10.1016/S0146-6380(00)00042-5

    Article  Google Scholar 

  • Kögel-Knabner I (2002) The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol Biochem 34:139–162. doi:10.1016/S0038-0717(01)00158-4

    Article  Google Scholar 

  • Kögel-Knabner I, Guggenberger G, Kleber M, Kandeler E, Kalbitz K, Scheu S, Eusterhues K, Leinweber P (2008) Organo-mineral associations in temperate soils: integrating biology, mineralogy, and organic matter chemistry. J Plant Nutr Soil Sci 171:61–82. doi:10.1002/jpln.200700048

    Article  Google Scholar 

  • Krull ES, Baldock JA, Skjemstad JO (2003) Importance of mechanisms and processes of the stabilisation of soil organic matter for modelling carbon turnover. Funct Plant Biol 30:207–222. doi:10.1071/FP02085

    Article  Google Scholar 

  • Kuzyakov Y (2006) Sources of CO2 efflux from soil and review of partitioning methods. Soil Biol Biochem 38:425–448. doi:10.1016/j.soilbio.2005.08.020

    Article  CAS  Google Scholar 

  • Lal R (2005) Forest soils and carbon sequestration. For Ecol Manag 220:242–258. doi:10.1016/j.foreco.2005.08.015

    Article  Google Scholar 

  • Lehmann J, Kleber M (2015) The contentious nature of soil organic matter. Nature 528(7580):60–68. doi:10.1038/nature16069

    Article  CAS  PubMed  Google Scholar 

  • Lorenz K, Lal R, Preston CM, Nierop KGJ (2007) Strengthening the soil organic carbon pool by increasing contributions from recalcitrant aliphatic bio(macro)molecules. Geoderma 142:1–10. doi:10.1016/j.geoderma.2007.07.013

    Article  CAS  Google Scholar 

  • Martens DA, Reedy TE, Lewis DT (2004) Soil organic carbon content and composition of 130-year crop, pasture and forest land-use managements. Glob Chang Biol 10:65–78. doi:10.1046/j.1529-8817.2003.00722.x

    Article  Google Scholar 

  • Mazzarino MJ, Oliva L, Abril A, Acosta M (1991) Factors affecting nitrogen dynamics in a semiarid woodland (Dry Chaco, Argentina). Plant Soil 138:85–98. doi:10.1007/bf00011811

    Article  CAS  Google Scholar 

  • Meier CL, Bowman WD (2008) Links between plant litter chemistry, species diversity, and below-ground ecosystem function. Proc Natl Acad Sci U S A 105:19780–19785. doi:10.1073/pnas.0805600105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metcalfe DB, Fisher RA, Wardle DA (2011) Plant communities as drivers of soil respiration: pathways, mechanisms, and significance for global change. Biogeosciences 8:2047–2061. doi:10.5194/bg-8-2047-2011

    Article  Google Scholar 

  • Moers MEC, Baas M, De Leeuw JW, Boon JJ, Schenck PA (1990) Occurrence and origin of carbohydrates in peat samples from a red mangrove environment as reflected by abundances of neutral monosaccharides. Geochim Cosmochim Acta 54:2463–2472. doi:10.1016/0016-7037(90)90233-B

    Article  CAS  Google Scholar 

  • Murty D, Kirschbaum MUF, McMurtrie RE, McGilvray H (2002) Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature. Glob Chang Biol 8:105–123. doi:10.1046/j.1354-1013.2001.00459.x

    Article  Google Scholar 

  • Navarro-García F, Casermeiro MA, Schimel JP (2012) When structure means conservation: effect of aggregate structure in controlling microbial responses to rewetting events. Soil Biol Biochem 44:1–8. doi:10.1016/j.soilbio.2011.09.019

    Article  Google Scholar 

  • Nave LE, Vance ED, Swanston CW, Curtis PS (2010) Harvest impacts on soil carbon storage in temperate forests. For Ecol Manag 259:857–866. doi:10.1016/j.foreco.2009.12.009

    Article  Google Scholar 

  • Nelson DW, Sommers LE (1996) Total carbon, organic carbon, and organic matter. In: Sparks DL (ed) Methods of soil analysis. Part 3. Chemical Methods. ASA, SSSA, CSSA, Madison, pp 961–1010

  • Oades JM (1984) Soil organic matter and structural stability: mechanisms and implications for management. Plant Soil 76:319–337. doi:10.1007/BF02205590

    Article  CAS  Google Scholar 

  • Poulter B, Frank D, Ciais P, Myneni RB, Andela N, Bi J, Broquet G, Canadell JG, Chevallier F, Liu YY, Running SW, Sitch S, van der Werf GR (2014) Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509:600–603

    Article  CAS  PubMed  Google Scholar 

  • Quested H, Eriksson O, Fortunel C, Garnier E (2007) Plant traits relate to whole-community litter quality and decomposition following land use change. Funct Ecol 21:1016–1026. doi:10.1111/j.1365-2435.2007.01324.x

    Article  Google Scholar 

  • Ramnarine R, Wagner-Riddle C, Dunfield KE, Voroney RP (2012) Contributions of carbonates to soil CO2 emissions. Can J Soil Sci 92:599–607

    Article  Google Scholar 

  • Rasse DP, Rumpel C, Dignac M-F (2005) Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 269:341–356. doi:10.1007/s11104-004-0907-y

    Article  CAS  Google Scholar 

  • Rumpel C, Dignac M-F (2006) Gas chromatographic analysis of monosaccharides in a forest soil profile: analysis by gas chromatography after trifluoroacetic acid hydrolysis and reduction–acetylation. Soil Biol Biochem 38:1478–1481. doi:10.1016/j.soilbio.2005.09.017

    Article  CAS  Google Scholar 

  • Schindlbacher A, Borken W, Djukic I, Brandstätter C, Spötl C, Wanek W (2015) Contribution of carbonate weathering to the CO2 efflux from temperate forest soils. Biogeochemistry 124:273–290. doi:10.1007/s10533-015-0097-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kogel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56. doi:10.1038/nature10386

    Article  CAS  PubMed  Google Scholar 

  • Six J, Elliott ET, Paustian K, Doran JW (1998) Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Sci Soc Am J 62(5):1367–1377. doi:10.2136/sssaj1998.03615995006200050032x

    Article  CAS  Google Scholar 

  • Six J, Conant RT, Paul EA, Paustian K (2002) Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil 241:155–176. doi:10.1023/A:1016125726789

    Article  CAS  Google Scholar 

  • Smith AP, Marín-Spiotta E, de Graaff MA, Balser TC (2014) Microbial community structure varies across soil organic matter aggregate pools during tropical land cover change. Soil Biol Biochem 77:292–303. doi:10.1016/j.soilbio.2014.05.030

    Article  CAS  Google Scholar 

  • Smith P, House JI, Bustamante M, Sobocká J, Harper R, Pan G, West P, Clark J, Adhya T, Rumpel C (2015) Global change pressures on soils from land use and management. Glob Chang Biol. doi:10.1111/gcb.13068

    PubMed Central  Google Scholar 

  • Tanentzap AJ, Coomes DA (2012) Carbon storage in terrestrial ecosystems: do browsing and grazing herbivores matter? Biol Rev 87(1):72–94. doi:10.1111/j.1469-185X.2011.00185.x

    Article  PubMed  Google Scholar 

  • Thevenot M, Dignac M-F, Rumpel C (2010) Fate of lignins in soils: a review. Soil Biol Biochem 42:1200–1211. doi:10.1016/j.soilbio.2010.03.017

    Article  CAS  Google Scholar 

  • Vanhala P, Tamminen P, Fritze H (2005) Relationship between basal soil respiration rate, tree stand and soil characteristics in boreal forests. Environ Monit Assess 101:85–92. doi:10.1007/s10661-005-9134-0

    Article  CAS  PubMed  Google Scholar 

  • Yanai RD, Currie WS, Goodale CL (2003) Soil carbon dynamics after forest harvest: an ecosystem paradigm reconsidered. Ecosystems 6:197–212. doi:10.1007/s10021-002-0206-5

    Article  CAS  Google Scholar 

  • Zakharova A, Beare MH, Cieraad E, Curtin D, Turnbull MH, Millard P (2015) Factors controlling labile soil organic matter vulnerability to loss following disturbance as assessed by measurement of soil-respired δ13CO2. Eur J Soil Sci 66:135–144. doi:10.1111/ejss.12209

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to land dwellers, owners and managers for allowing us to work in their properties and to the Secretaría de Ambiente de Córdoba. This study is a contribution of the MIRA program from the Rhone-Alpes region, France; and of Núcleo DiverSus, endorsed by DIVERSITAS and the IGBP Global Land Project, and supported by FONCyT (PICT-0365 and PICT-0554), CONICET, SECyT - Universidad Nacional de Córdoba and the Inter-American Institute for Global Change Research (IAI) CRN 2015 and SGP-CRA2015 (which were supported by the US National Science Foundation grants GEO-0452325 and GEO-1138881). GC postdoc grant was supported by Fundación Bunge y Born Argentina and CONICET. We acknowledge Charlène Thedevuide for carrying out the lignin and CH analyses and to two anonymous reviewers for their insightful comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Conti.

Additional information

Responsible Editor: Ingrid Koegel-Knabner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 57 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conti, G., Kowaljow, E., Baptist, F. et al. Altered soil carbon dynamics under different land-use regimes in subtropical seasonally-dry forests of central Argentina. Plant Soil 403, 375–387 (2016). https://doi.org/10.1007/s11104-016-2816-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-016-2816-2

Keywords

Navigation