Skip to main content

Advertisement

Log in

The free-living rhizosphere fungus Trichoderma hamatum GD12 enhances clover productivity in clover-ryegrass mixtures

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aim

A principal goal of grassland management is to minimize the use of artificial fertilizers by maximising the productivity of nitrogen-fixing leguminous plants such as clovers. The objective of this study was to investigate whether a plant-growth-promoting strain of the free-living rhizosphere fungus Trichoderma hamatum (GD12) could be used as a natural and sustainable means of enhancing the competitiveness of white clover (Trifolium repens) while allowing increased productivity of both clover and ryegrass (Lolium perenne) in mixed species systems.

Methods

An assay was conducted in rhizotrons with white clover and ryegrass sown alone and in mixture and in soils inoculated and non-inoculated with GD12. Plant height, growing rate, phenological stage, number of Rhizobium nodules and biomass were assessed. A histological study of Rhizobium nodules and a stable isotopes analysis was conducted to determine the N fixation capacity of white clover.

Results

When introduced as a soil inoculant, the fungus increased biomass production of both plant species and shortened their phenological cycles. Furthermore, in clover, GD12 enhanced plant height and growth rate and stimulated Rhizobium nodulation, while 15 N stable isotope analysis demonstrated increased N2 fixation.

Conclusion

This shows that soil amendment with a beneficial strain of saprotrophic fungus bestows a competitive advantage to white clover in clover-ryegrass mixtures and provides a sustainable mechanism for improving the mixture productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Annicchiarico P, Proietti S (2010) White clover selected for enhanced competitive ability widens the compatibility with grasses and favours the optimization of legume content and forage yield in mown clover-grass mixture. Grass Forage Sci 65:318–324. doi:10.1111/j.1365-2494.2010.00749.x

    Article  Google Scholar 

  • Annicchiarico P, Tomasoni C (2010) Optimizing legume content and forage yield of mown white clover-Italian ryegrass mixtures through nitrogen fertilization and grass row spacing. Grass Forage Sci 65:220–226. doi:10.1111/j.1365-2494.2010.00740.x

    Article  CAS  Google Scholar 

  • Badar R, Qureshi SA (2012) Comparative effect of Trichoderma hamatum and host-specific Rhizobium species on growth of Vigna mungo. J Appl Pharm Sci 2(4):128–132. doi:10.7324/JAPS.2012.2409

    Article  Google Scholar 

  • Baker R, Elad Y, Chet I (1984) The controlled experiment in the scientific method with special emphasis on biological control. Phytopathology 74:1019–1021. doi:10.1094/Phyto-74-1019

    Article  Google Scholar 

  • Borrero C, Trillas MI, Delgado A, Avilés M (2012) Effect of ammonium/nitrate ratio in nutrients solution on control of Fusarium wilt of tomato by Trichoderma asperellum T34. Plant Pathol 61:132–139. doi:10.1111/j.1365-3059.2011.02490.x

    Article  CAS  Google Scholar 

  • Carlsson G, Palmborg C, Jummpponen A, Scherer-Lorenzen M, Högberg P, Huss-Danell K (2009) N2 fixation in three perennial Trifolium species in experimental grasslands of varied plant species richness and composition. Plant Ecol 205:87–104. doi:10.1007/s11258-009-9600-9

    Article  Google Scholar 

  • Chang YC, Chang YC, Baker R, Kleifeld O, Chet I (1986) Increased growth of plants in the presence of the biological-control agent Trichoderma harzianum. Plant Dis 70(2):145–148. doi:10.1094/PD-70-145

    Article  Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, Cortés-Penagos C, López-Bucio J (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol 149:1579–1592. doi:10.1104/pp. 108.130369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crotty FV, Adi SM, Blackshaw RP, Murray PJ (2012) Using stable isotopes to differentiate trophic feeding channels within soil food webs. J Eukaryot Microbiol 59(6):520–526. doi:10.1111/j.1550-7408.2011.00608.x

    Article  PubMed  Google Scholar 

  • de Santiago A, Quintero JM, Avilés M, Delgado A (2009) Effect of Trichoderma asperellum strain T34 on iron nutrition in white lupin. Soil Biol Biochem 41:2453–2459. doi:10.1016/j.soilbio.2009.07.033

    Article  Google Scholar 

  • de Santiago A, Quintero JM, Avilés M, Delgado A (2011) Effect of Trichoderma asperellum strain T34 on iron, copper, manganese, and zinc uptake by wheat grown on a calcareous medium. Plant Soil 342:97–104. doi:10.1007/s11104-010-0670-1

    Article  CAS  Google Scholar 

  • Frame J, Newbould P (1986) Agronomy of white clover. Adv Agron 40:1–88. doi:10.1016/S0065-2113(08)60280-1

    Article  Google Scholar 

  • Frankow-Lindberg BE, Frame J (1996) Developments and challenges in sustainable grassland production. Grassland Sci Eur 1:337–345

    Google Scholar 

  • Frey B, Schüepp H (1992) Transfer of symbiotically fixed nitrogen from berseem (Trifolium alexandrinum L.) to maize via vesicular-arbuscularmycorrhizal hyphae. New Phytol 122:447–454. doi:10.1111/j.1469-8137.1992.tb00072.x

    Article  CAS  Google Scholar 

  • Gierus M, Kleen J, Loges R, Taube F (2012) Forage legume species determine the nutritional quality of binary mixture with perennial ryegrass in the first production year. An Feed Sci Technol 172:150–161. doi:10.1016/j.anifeedsci.2011.12.026

    Article  Google Scholar 

  • Harman GE (2000) Myths and dogmas of biocontrol. Changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Dis 84(4):377–393. doi:10.1094/PDIS.2000.84.4.377

    Article  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chat I, Lorito M (2004) Trichoderma species - opportunistic, avirulent plant symbionts. Nature Rev Microbiol 2:43–56

  • Harrod TR, Hogan DV (2008) The soils of North Wyke and Rowden. Soil survey of England and Wales. Rothamsted Research, Okehampton, UK http://www.rothamsted.ac.uk/sites/default/files/SoilsNWRowden.pdf Accessed 22 July 2014

  • Harvey A, Parsons AJ, Rook AJ, Penning PD, Orr RJ (2000) Dietary preference of sheep for perennial ryegrass and white clover at contrasting sward surface heights. Grass Forage Sci 55:242–252

    Article  Google Scholar 

  • Haynes RJ (1988) Competitive aspects of the grass-legume association. Adv Agron 33:227–262

    Article  Google Scholar 

  • Høgh-Jensen H, Schjoerring JK (2010) Interactions between nitrogen, phosphorus and potassium determine growth and N2-fixation in white clover and ryegrass leys. Nutr Cycl Agroecosyst 87:327–338. doi:10.1007/s10705-009-9341-0

    Article  Google Scholar 

  • Johansen A, Jensen ES (1996) Transfer of N and P from intact or decomposing roots of pea to barley interconnected by an arbuscular mycorrhizal fungus. Soil Biol Biochem 28:73–81. doi:10.1016/0038-0717(95)00117-4

    Article  CAS  Google Scholar 

  • Lancashire PD, Bleiholder H, Van Den Boom T, Langeluddeke P, Stauss R, Weber E, Witzenberger A (1991) An uniform decimal code for growth stage crops and weeds. Ann Appl Biol 119:561–601. doi:10.1111/j.1744-7348.1991.tb04895.x

    Article  Google Scholar 

  • Melino VJ, Drew EA, Ballard RA, Reeve WG, Thomson G, White RG, O’Hara GW (2012) Identifying abnormalities in symbiotic development between Trifolium spp. and Rhizobium leguminosarum v. trifolii leading to sub-optimal and ineffective nodule phenotypes. Ann Bot 110(1559–15):55

    Google Scholar 

  • Murray PJ, Clements RO (1998) Transfer of nitrogen between clover and wheat: effect of root herbivory. Eur J Soil Biol 34:25–30. doi:10.1016/S1164-5563(99)80003-X

    Article  Google Scholar 

  • Murray PJ, Hatch DJ (1994) Sitona weevils (Coleoptera, Curculionidae) as agents for rapid transfer of nitrogen from white clover (Trifolium repens L) to perennial ryegrass (Lolium perenne L) Ann. Appl Biol 125:29–33. doi:10.1111/j.1744-7348.1994.tb04943.x

    Article  Google Scholar 

  • Murray PJ, Clegg CD, Crotty FV, de la Fuente-Martínez N, Williams JK, Blackshaw RP (2009) Dissipation of bacterially derived C and N through the meso and macrofauna of a grassland soil. Soil Biol Biochem 41:1146–1150. doi:10.1016/j.soilbio.2009.02.021

    Article  CAS  Google Scholar 

  • Naseby DC, Pascual JA, Lynch JM (2000) Effect of biocontrol strains of Trichoderma on plant growth, Pythium ultimum populations, soil microbial communities and soil enzyme activities. J Appl Microbiol 88:161–169. doi:10.1046/j.1365-2672.2000.00939.x

    Article  CAS  PubMed  Google Scholar 

  • Nesheim L, Boller BC (1991) Nitrogen-fixation by white clover when competing with grasses at moderately low-temperatures. Plant Soil 133:47–56. doi:10.1007/BF00011898

    Article  CAS  Google Scholar 

  • Nyfeler D, Huguenin-Elie O, Suter M, Frossard E, Lüscher A (2011) Grass-legume mixture can yield more nitrogen than legume pure stands due to mutual stimulation of nitrogen uptake from symbiotic and non-symbiotic source. Agric Ecosyst Environ 140:155–163. doi:10.1016/j.agee.2010.11.022

    Article  Google Scholar 

  • Oke V, Long SR (1999) Bacteroid formation in the Rhizobium-legume symbiosis. Curr Opts Microbiol 2:641–646. doi:10.1016/S1369-5274(99)00035-1

    Article  CAS  Google Scholar 

  • Parsons AJ, Chapman DF (2000) The principles of pasture growth and utilization. In: Hopkins A (ed) Grass, its production & utilization, 3rd edn. British Grassland Society by Blackwell Science, Oxford, pp 31–89

    Google Scholar 

  • Paynel F, Murray PJ, Cliquet JB (2001) Root exudates: a pathway for short-term N transfer from clover and ryegrass. Plant Soil 229(2):235–243. doi:10.1023/A:1004877214831

    Article  CAS  Google Scholar 

  • Peeters A (2009) Importance, evolution, environmental impact and future challenges of grasslands and grassland-based systems in Europe. Grassland Sci 55:113–125. doi:10.1111/j.1744-697X.2009.00154.x

    Article  Google Scholar 

  • Penning PD, Newman JA, Parsons AJ, Harvey A, Orr RJ (1997) Diet preferences of adult sheep and goats grazing ryegrass and white clover. Small Rumin Res 24:175–184. doi:10.1016/S0921-4488(96)00930-3

    Article  Google Scholar 

  • Pérez-de-Luque A, Rubiales D, Cubero JI, Press MC, Scholes J, Yoneyama K, Takeuchi Y, Plakhine D, Joel DM (2005) Interaction between Orobanche crenata and its host legumes: unsuccessful haustorial penetration and necrosis of the developing parasite. Ann Bot 95:935–942. doi:10.1093/aob/mci105

    Article  PubMed  PubMed Central  Google Scholar 

  • Rassmusen J, Eriksen J, Jensen ES, Esbensen KH, Høgh-Jensen H (2007) In situ carbon and nitrogen dynamics in ryegrass-clover mixture: transfer, deposition and leaching. Soil Biol Biochem 39:804–815. doi:10.1016/j.soilbio.2006.10.004

    Article  Google Scholar 

  • Rassmusen J, Søegaard K, Pirhofer-Walzi K, Eriksen J (2012) N2-fixation and residual N effect of four legume species and four companion grass species. Eur J Agron 36:66–74. doi:10.1016/j.eja.2011.09.003

    Article  Google Scholar 

  • Romão-Dumaresq AS, de Araújo WL, Talbot NJ, Talbot NJ (2012) RNA interference of endochitinases in the sugarcane endophyte Trichoderma virens 223 reduces its fitness as biocontrol agent of pineapple disease. PLoS ONE 7:e47888. doi:10.1371/journal.pone.0047888

    Article  PubMed  PubMed Central  Google Scholar 

  • Rook AJ, Harvey A, Parsons AJ, Penning PD, Orr RJ (2002) Effect of long-term changes in relative resource availability on dietary preference of grazing sheep for perennial ryegrass and white clover. Grass Forage Sci 57:54–60. doi:10.1046/j.1365-2494.2002.00301.x

    Article  Google Scholar 

  • Ruzin SE (1999) Plant microtechniques and microscopy. Oxford University Press, New York, USA

  • Ryder LS, Harris BD, Soanes DM, Kershaw MJ, Talbot NJ, Thornton CR (2012) Saprotrophic competitiveness and biocontrol fitness of a genetically modified strain of the plant-growth-promoting fungus Trichoderma hamatum GD12. Microbiology 158:84–97. doi:10.1099/mic.0.051854-0

    Article  CAS  PubMed  Google Scholar 

  • Shaban WI, El-Bramawy MA (2011) Impact of dual inoculation with Rhizobium and Trichoderma on damping off, root rot diseases and plant growth parameters of some legumes field crop under greenhouse conditions. International Res. J Agric Sci Soil Sci 1(3):98–108

    Google Scholar 

  • Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Ann Rev Phytopathol 48:21–43

    Article  CAS  Google Scholar 

  • Sreenivasaprasad S, Sharada K, Brown A, Mills P (1996) PCR-based detection of Colletotrichum acutatum on strawberry. Plant Pathol 45:650–655

    Article  CAS  Google Scholar 

  • Studholme D, Harris B, Le Cocq K, Winsbury R, Perera V, Ryder L, Ward JL, Beale MH, Thornton CR, Grant M (2013) Investigating the beneficial traits of Trichoderma hamatum GD12 for sustainable agriculture – insights from genomics. Front Plant Sci 4:1–13. doi:10.3389/fpls.2013.00258

    Article  Google Scholar 

  • Talbot NJ, Salch YP, Ma M, Hamer JE (1993) Karyotypic variation within clonal lineages of the rice blast fungus, Magnaporthe grisea. Appl Environ Microbiol 59:585–593

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vance CP, Johnson LEB, Hardarson G (1980) Histological comparisons of plant and Rhizobium induced ineffective nodules in alfalfa. Physiol Plant Pathol 17:167–173. doi:10.1016/0048-4059(80)90049-1

    Article  Google Scholar 

  • Vargas WA, Mandawe JC, Kenerley CM (2009) Plant-derived sucrose is a key element in the symbiotic association between Trichoderma virens and maize plants. Plant Physiol 151:792–808. doi:10.1104/pp. 109.141291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vasse J, De Billy F, Camut S, Truchet G (1990) Correlation between ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa nodules. J Bacteriol 8:4295–4306

    Article  Google Scholar 

  • Viterbo A, Horwitz BA (2010) Mycoparasitism. In: Borkovich KA, Ebbole DJ (eds) Cellular and biology of filamentous fungi. American Society for Microbiology, Washington, pp 676–693

    Chapter  Google Scholar 

  • Walker JA, King JR (2010) Does relative time of emergence affect stand composition and yield in a grass-legume mixture? Kura clover (Trifolium ambiguum)-meadow bromegrass (Bromus biebersteinii) and Kura clover-orchardgrass (Dactylis glomerata) mixtures. Grass Forage Sci 65:237–347. doi:10.1111/j.1365-2494.2010.00742.x

    Article  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: Guide Methods Appl 18:315–322

    Google Scholar 

  • Woledge J, Davidson K, Dennis WD (1992) Growth and photosynthesis of tall and short cultivars of white clover with tall and short grasses. Grass Forage Sci 47:230–238. doi:10.1111/j.1365-2494.1992.tb02267.x

    Article  Google Scholar 

  • Yedidia I, Srivastva AK, Kapulnik Y, Chet I (2001) Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant Soil 235:235–242. doi:10.1023/A:1011990013955

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like acknowledge to the Operative Program of European Social Fund (ESF) 2007–2013 “Andalucía se mueve con Europa” and to the project INIA-RTA2011-00031 that funded the contract and stay of C. Alcántara in North Wyke Rothamsted Research. Rothamsted Research is supported by the UK Biotechnology and Biological Sciences Research Council (BBSRC). The authors would to thank Dr. Domínguez for reviewing the statistical methods used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Alcántara.

Additional information

Responsible Editor: Duncan D. Cameron.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. 1

Cross sections of Rhizobium nodules on roots of white clover. a) General view of a nodule from clover growing in un-inoculated soil. b) Detail of a (square I) showing cells with bacteroids at the infection zone. c) Detail of a (square II) showing infected cells at the nitrogen-fixing zone. d) Detail of a (square III) showing infected cells at the senescence zone. e) Detailed picture of cells from the nitrogen-fixing zone showing bacteroids with rod-shaped form. f) General view of a nodule from clover growing in Trichoderma inoculated soil. g) Detail of f (square I) showing cells with bacteroids at the infection zone. h) Detail of f (square II) showing infected cells at the nitrogen-fixing zone. Notice the presence of cells containing starch and amyloplasts (arrows). i) Detail of f (square III) showing infected cells at the senescence zone. j) Detailed picture of cells from the nitrogen-fixing zone showing bacteroids with rod-shaped form and the presence of amyloplasts inside some cells (arrows) (TIFF 29214 kb)

High Resolution (GIF 14269 kb)

Fig. 2

Rhizotrons from two replicates of the different species: clover (a, b), ryegrass (c, d) and mixture (e, f); and treatments (with or without T). Notice the differences in plant size between rhizotrons inoculated with GD12 and those un-inoculated (TIFF 567 kb)

High Resolution (GIF 294 kb)

Fig. 3

Root morphologies of clover and ryegrass plants grown in soil inoculated with T. hamatum GD12 (+T) or in un-inoculated soil (−T). Scale bar = 7,5 cm. (TIFF 188 kb)

High Resolution (GIF 10 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alcántara, C., Thornton, C.R., Pérez-de-Luque, A. et al. The free-living rhizosphere fungus Trichoderma hamatum GD12 enhances clover productivity in clover-ryegrass mixtures. Plant Soil 398, 165–180 (2016). https://doi.org/10.1007/s11104-015-2646-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2646-7

Keywords

Navigation