Skip to main content
Log in

Irregular xylem 7 (IRX7) is required for anchoring seed coat mucilage in Arabidopsis

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Large quantities of mucilage are synthesized in seed coat epidermis cells during seed coat differentiation. This process is an ideal model system for the study of plant cell wall biosynthesis and modifications. In this study, we show that mutation in Irregular Xylem 7 (IRX7) results in a defect in mucilage adherence due to reduced xylan biosynthesis. IRX7 was expressed in the seeds from 4 days post-anthesis (DPA) to 13 DPA, with the peak of expression at 13 DPA. The seed coat epidermis cells of irx7 displayed no aberrant morphology during differentiation, and these cells synthesized and deposited the same amount of mucilage as did wild type (WT) cells. However, the distribution of the water-soluble vs. adherent mucilage layers was significantly altered in irx7 compared to the WT. Both the amount of xylose and the extent of glycosyl linkages of xylan was dramatically decreased in irx7 water-soluble and adherent mucilage compared to the WT. The polymeric structure of water-soluble mucilage was altered in irx7, with a total loss of the higher molecular weight polymer components present in the WT. Correspondingly, whole-seed immunolabeling assays and dot-immunoassays of extracted mucilage indicated dramatic changes in rhamnogalacturonan I (RG I) and xylan epitopes in irx7 mucilage. Furthermore, the crystalline cellulose content was significantly reduced in irx7 mucilage. Taken together, these results indicate that xylan synthesized by IRX7 plays an essential role in maintaining the adhesive property of seed coat mucilage, and its structural role is potentially implemented through its interaction with cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anders N, Wilkinson MD, Lovegrove A, Freeman J, Tryfona T, Pellny TK, Weimar T, Mortimer JC, Stott K, Baker JM, Defoin-Platel M, Shewry PR, Dupree P, Mitchell RA (2012) Glycosyl transferases in family 61 mediate arabinofuranosyl transfer onto xylan in grasses. Proc Natl Acad Sci USA 109:989–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersson SI, Samuelson O, Ishihara M, Shimizu K (1983) Structure of the reducing end-groups in spruce xylan. Carbohydr Res 111:283–288

    Article  CAS  Google Scholar 

  • Arsovski AA, Haughn GW, Western TL (2010) Seed coat mucilage cells of Arabidopsis thaliana as a model for plant cell wall research. Plant Signal Behav 5:796–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben-Tov D, Abraham Y, Stav S, Thompson K, Loraine A, Elbaum R, de Souza A, Pauly M, Kieber JJ, Harpaz-Saad S (2015) COBRA-LIKE2, a member of the glycosylphosphatidylinositol-anchored COBRA-LIKE family, plays a role in cellulose deposition in Arabidopsis seed coat mucilage secretory cells. Plant Physiol 167:711–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bromley JR, Busse-Wicher M, Tryfona T, Mortimer JC, Zhang Z, Brown DM, Dupree P (2013) GUX1 and GUX2 glucuronyltransferases decorate distinct domains of glucuronoxylan with different substitution patterns. Plant J 74:423–434

    Article  CAS  PubMed  Google Scholar 

  • Brown DM, Goubet F, Wong VW, Goodacre R, Stephens E, Dupree P, Turner SR (2007) Comparison of five xylan synthesis mutants reveals new insight into the mechanisms of xylan synthesis.Plant J 52:1154–1168

    Article  CAS  PubMed  Google Scholar 

  • Brown DM, Zhang Z, Stephens E, Dupree P, Turner SR (2009) Characterization of IRX10 and IRX10-like reveals an essential role in glucuronoxylan biosynthesis in Arabidopsis. Plant J 57:732–746

    Article  CAS  PubMed  Google Scholar 

  • Brown D, Wightman R, Zhang Z, Gomez LD, Atanassov I, Bukowski JP, Tryfona T, McQueen-Mason SJ, Dupree P, Turner S (2011) Arabidopsis genes IRREGULAR XYLEM (IRX15) and IRX15L encode DUF579-containing proteins that are essential for normal xylan deposition in the secondary cell wall. Plant J 66:401–413

    Article  CAS  PubMed  Google Scholar 

  • Busse-Wicher M, Gomes TC, Tryfona T, Nikolovski N, Stott K, Grantham NJ, Bolam DN, Skaf MS, Dupree P (2014) The pattern of xylan acetylation suggests xylan may interact with cellulose microfibrils as a twofold helical screw in the secondary plant cell wall of Arabidopsis thaliana. Plant J 79:492–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30

    Article  CAS  PubMed  Google Scholar 

  • Chiniquy D, Sharma V, Schultink A, Baidoo EE, Rautengarten C, Cheng K, Carroll A, Ulvskov P, Harholt J, Keasling JD, Pauly M, Scheller HV, Ronald PC (2012) XAX1 from glycosyltransferase family 61 mediates xylosyltransfer to rice xylan. Proc Natl Acad Sci USA 109:17117–17122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebringerová A, Heinze T (2000) Xylan and xylan derivatives—biopolymers with valuable properties, 1. Naturally occurring xylans structures, isolation procedures and properties. Macromol Rapid Commun 21:542–556

    Article  Google Scholar 

  • Francoz E, Ranocha P, Burlat V, Dunand C (2015) Arabidopsis seed mucilage secretory cells: regulation and dynamics. Trends Plant Sci 20:515–524

    Article  CAS  PubMed  Google Scholar 

  • Gibeaut DM, Carpita NC (1991) Tracing cell wall biogenesis in intact cells and plants: selective turnover and alteration of soluble and cell wall polysaccharides in grasses. Plant Physiol 97:551–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffiths JS, Tsai AY, Xue H, Voiniciuc C, Sola K, Seifert GJ, Mansfield SD, Haughn GW (2014) SALT-OVERLY SENSITIVE5 mediates Arabidopsis seed coat mucilage adherence and organization through pectins. Plant Physiol 165:991–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harpaz-Saad S, McFarlane HE, Xu S, Divi UK, Forward B, Western TL, Kieber JJ (2011) Cellulose synthesis via the FEI2 RLK/SOS5 pathway and cellulose synthase 5 is required for the structure of seed coat mucilage in Arabidopsis. Plant J 68:941–953

    Article  CAS  PubMed  Google Scholar 

  • Haughn GW, Western TL (2012) Arabidopsis seed coat mucilage is a specialized cell wall that can be used as a model for genetic analysis of plant cell wall structure and function. Front Plant Sci 3:64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, DeBowles D, Esfandiari E, Dean G, Carpita NC, Haughn GW (2011) The Arabidopsis transcription factor LUH/MUM1 is required for extrusion of seed coat mucilage. Plant Physiol 156:491–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen JK, Kim H, Cocuron JC, Orler R, Ralph J, Wilkerson CG (2011) The DUF579 domain containing proteins IRX15 and IRX15-L affect xylan synthesis in Arabidopsis. Plant J 66:387–400

    Article  CAS  PubMed  Google Scholar 

  • Johansson MH, Samuelson O (1977) Reducing end groups in birch xylan and their alkaline degradation. Wood Sci Technol 11:251–263

    Article  CAS  Google Scholar 

  • Kabel MA, van den Borne H, Vincken J-P, Voragen AGJ, Schols HA (2007) Structural differences of xylans affect their interaction with cellulose. Carbohydr Polym 69:94–105

    Article  CAS  Google Scholar 

  • Keppler BD, Showalter AM (2010) IRX14 and IRX14-LIKE, two glycosyl transferases involved in glucuronoxylan biosynthesis and drought tolerance in Arabidopsis. Mol Plant 3:834–841

    Article  CAS  PubMed  Google Scholar 

  • Köhnke T, Pujolras C, Roubroeks JP, Gatenholm P (2008) The effect of barley husk arabinoxylan adsorption on the properties of cellulose fibres. Cellulose 15:537–546

    Article  Google Scholar 

  • Kong Y, Zhou G, Abdeen AA, Schafhauser J, Richardson B, Atmodjo MA, Jung J, Wicker L, Mohnen D, Western T, Hahn MG (2013) GALACTURONOSYLTRANSFERASE-LIKE5 is involved in the production of Arabidopsis seed coat mucilage. Plant Physiol 163:1203–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laurentin A, Edwards CA (2003) A microtiter modification of the anthrone-sulfuric acid colorimetric assay for glucose-based carbohydrates. Anal Biochem 315:143–145

    Article  CAS  PubMed  Google Scholar 

  • Le BH, Cheng C, Bui AQ, Wagmaister JA, Henry KF, Pelletier J, Kwong L, Belmonte M, Kirkbride R, Horvath S, Drews GN, Fischer RL, Okamuro JK, Harada JJ, Goldberg RB (2010) Global analysis of gene activity during Arabidopsis seed development and identification of seed-specific transcription factors. Proc Natl Acad Sci USA 107:8063–8070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee C, O’Neill MA, Tsumuraya Y, Darvill AG, Ye ZH (2007a) The irregular xylem9 mutant is deficient in xylan xylosyltransferase activity. Plant Cell Physiol 48:1624–1634

    Article  CAS  PubMed  Google Scholar 

  • Lee C, Zhong R, Richardson EA, Himmelsbach DS, McPhail BT, Ye ZH (2007b) The PARVUS gene is expressed in cells undergoing secondary wall thickening and is essential for glucuronoxylan biosynthesis. Plant Cell Physiol 48:1659–1672

    Article  CAS  PubMed  Google Scholar 

  • Lee C, Teng Q, Huang W, Zhong R, Ye ZH (2009) The F8H glycosyltransferase is a functional paralog of FRA8 involved in glucuronoxylan biosynthesis in Arabidopsis. Plant Cell Physiol 50:812–827

    Article  CAS  PubMed  Google Scholar 

  • Lee C, Teng Q, Huang W, Zhong R, Ye ZH (2010) The Arabidopsis family GT43 glycosyltransferases form two functionally nonredundant groups essential for the elongation of glucuronoxylan backbone. Plant Physiol 153:526–541

    Article  CAS  PubMed Central  Google Scholar 

  • Lee C, Teng Q, Zhong R, Yuan Y, Haghighat M, Ye ZH (2012) Three Arabidopsis DUF579 domain-containing GXM proteins are methyltransferases catalyzing 4-O-methylation of glucuronic acid on xylan. Plant Cell Physiol 53:1934–1949

    Article  CAS  PubMed  Google Scholar 

  • Li L, Perre P, Frank X, Mazeau K (2015) A coarse-grain force-field for xylan and its interaction with cellulose. Carbohydr Polym 127:438–450

    Article  CAS  PubMed  Google Scholar 

  • Linder A, Bergman R, Bodin A, Gatenholm P (2003) Mechanism of assembly of xylan onto cellulose surfaces. Langmuir 19:5072–5077

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402-408

    Article  CAS  PubMed  Google Scholar 

  • Macquet A, Ralet MC, Kronenberger J, Marion-Poll A, North HM (2007) In situ, chemical and macromolecular study of the composition of Arabidopsis thaliana seed coat mucilage. Plant Cell Physiol 48:984–999

    Article  CAS  PubMed  Google Scholar 

  • McCartney L, Marcus SE, Knox JP (2005) Monoclonal antibodies to plant cell wall xylans and arabinoxylans. J Histochem Cytochem 53:543–546

    Article  CAS  PubMed  Google Scholar 

  • Mendu V, Griffiths JS, Persson S, Stork J, Downie AB, Voiniciuc C, Haughn GW, DeBolt S (2011) Subfunctionalization of cellulose synthases in seed coat epidermal cells mediates secondary radial wall synthesis and mucilage attachment. Plant Physiol 157:441–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mortimer JC, Faria-Blanc N, Yu X, Tryfona T, Sorieul M, Ng YZ, Zhang Z, Stott K, Anders N, Dupree P (2015) An unusual xylan in Arabidopsis primary cell walls is synthesised by GUX3, IRX9L, IRX10L and IRX14. Plant J 83:413–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pattathil S, Avci U, Baldwin D, Swennes AG, McGill JA, Popper Z, Bootten T, Albert A, Davis RH, Chennareddy C, Dong R, O’Shea B, Rossi R, Leoff C, Freshour G, Narra R, O’Neil M, York WS, Hahn MG (2010) A comprehensive toolkit of plant cell wall glycan-directed monoclonal antibodies. Plant Physiol 153:514–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pena MJ, Zhong R, Zhou GK, Richardson EA, O’Neill MA, Darvill AG, York WS, Ye ZH (2007) Arabidopsis irregular xylem8 and irregular xylem9: implications for the complexity of glucuronoxylan biosynthesis. Plant Cell 19:549–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Persson S, Caffall KH, Freshour G, Hilley MT, Bauer S, Poindexter P, Hahn MG, Mohnen D, Somerville C (2007) The Arabidopsis irregular xylem8 mutant is deficient in glucuronoxylan and homogalacturonan, which are essential for secondary cell wall integrity. Plant Cell 19:237–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pettolino FA, Walsh C, Fincher GB, Bacic A (2012) Determining the polysaccharide composition of plant cell walls. Nat Protoc 7:1590–1607

    Article  CAS  PubMed  Google Scholar 

  • Ratnayake S, Beahan CT, Callahan DL, Bacic A (2014) The reducing end sequence of wheat endosperm cell wall arabinoxylans. Carbohydr Res 386:23–32

    Article  CAS  PubMed  Google Scholar 

  • Rennie EA, Hansen SF, Baidoo EE, Hadi MZ, Keasling JD, Scheller HV (2012) Three members of the Arabidopsis glycosyltransferase family 8 are xylan glucuronosyltransferases. Plant Physiol 159:1408–1417

    Article  CAS  PubMed Central  Google Scholar 

  • Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289

    Article  CAS  PubMed  Google Scholar 

  • Sullivan S, Ralet MC, Berger A, Diatloff E, Bischoff V, Gonneau M, Marion-Poll A, North HM (2011) CESA5 is required for the synthesis of cellulose with a role in structuring the adherent mucilage of Arabidopsis seeds. Plant Physiol 156:1725–1739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan L, Eberhard S, Pattathil S, Warder C, Glushka J, Yuan C, Hao Z, Zhu X, Avci U, Miller JS, Baldwin D, Pham C, Orlando R, Darvill A, Hahn MG, Kieliszewski MJ, Mohnen D (2013) An Arabidopsis cell wall proteoglycan consists of pectin and arabinoxylan covalently linked to an arabinogalactan protein. Plant Cell 25:270–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tokoh C, Takabe K, Sugiyama J, Fujita M (2002) CP/MAS 13 C NMR and electron diffraction study of bacterial cellulose structure affected by cell wall polysaccharides. Cellulose 9:351–360

    Article  CAS  Google Scholar 

  • Updegraff DM (1969) Semimicro determination of cellulose in biological materials. Anal Biochem 32:420–424

    Article  CAS  PubMed  Google Scholar 

  • Urbanowicz BR, Pena MJ, Moniz HA, Moremen KW, York WS (2014) Two Arabidopsis proteins synthesize acetylated xylan in vitro. Plant J 80:197–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voiniciuc C, Schmidt MH, Berger A, Yang B, Ebert B, Scheller HV, North HM, Usadel B, Guenl M (2015) MUCI10 produces galactoglucomannan that maintains pectin and cellulose architecture in Arabidopsis seed mucilage. Plant Physiol 169:403–420

    Article  PubMed  PubMed Central  Google Scholar 

  • Voiniciuc C, Yang B, Schmidt MH, Gunl M, Usadel B (2015) Starting to gel: how Arabidopsis seed coat epidermal cells produce specialized secondary cell walls. Int J Mol Sci 16:3452–3473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker M, Tehseen M, Doblin MS, Pettolino FA, Wilson SM, Bacic A, Golz JF (2011) The transcriptional regulator LEUNIG_HOMOLOG regulates mucilage release from the Arabidopsis testa. Plant Physiol 156:46–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang T, Hong M (2016) Solid-state NMR investigations of cellulose structure and interactions with matrix polysaccharides in plant primary cell walls. J Exp Bot 67:503–514

    Article  CAS  PubMed  Google Scholar 

  • Western TL (2012) The sticky tale of seed coat mucilages: production, genetics, and role in seed germination and dispersal. Seed Sci Res 22:1–25

    Article  CAS  Google Scholar 

  • Western TL, Skinner DJ, Haughn GW (2000) Differentiation of mucilage secretory cells of the Arabidopsis seed coat. Plant Physiol 122:345–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willats WG, McCartney L, Knox JP (2001) In-situ analysis of pectic polysaccharides in seed mucilage and at the root surface of Arabidopsis thaliana. Planta 213:37–44

    Article  CAS  PubMed  Google Scholar 

  • Windsor JB, Symonds VV, Mendenhall J, Lloyd AM (2000) Arabidopsis seed coat development: morphological differentiation of the outer integument. Plant J 22:483–493

    Article  CAS  PubMed  Google Scholar 

  • Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ (2007) An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS One 2:e718

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu AM, Rihouey C, Seveno M, Hornblad E, Singh SK, Matsunaga T, Ishii T, Lerouge P, Marchant A (2009) The Arabidopsis IRX10 and IRX10-LIKE glycosyltransferases are critical for glucuronoxylan biosynthesis during secondary cell wall formation. Plant J 57:718–731

    Article  CAS  PubMed  Google Scholar 

  • Wu AM, Hornblad E, Voxeur A, Gerber L, Rihouey C, Lerouge P, Marchant A (2010) Analysis of the Arabidopsis IRX9/IRX9-L and IRX14/IRX14-L pairs of glycosyltransferase genes reveals critical contributions to biosynthesis of the hemicellulose glucuronoxylan. Plant Physiol 153:542–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong G, Cheng K, Pauly M (2013) Xylan O-acetylation impacts xylem development and enzymatic recalcitrance as indicated by the Arabidopsis mutant tbl29. Mol Plant 6:1373–1375

    Article  CAS  PubMed  Google Scholar 

  • York WS, O’Neill MA (2008) Biochemical control of xylan biosynthesis-which end is up? Curr Opin Plant Biol 11:258–265

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Shi D, Li J, Kong Y, Yu Y, Chai G, Hu R, Wang J, Hahn MG, Zhou G (2014) CELLULOSE SYNTHASE-LIKE A2, a glucomannan synthase, is involved in maintaining adherent mucilage structure in Arabidopsis seed. Plant Physiol 164:1842–1856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan Y, Teng Q, Zhong R, Ye ZH (2013) The Arabidopsis DUF231 domain-containing protein ESK1 mediates 2-O- and 3-O-acetylation of xylosyl residues in xylan. Plant Cell Physiol 54:1186–1199

    Article  CAS  PubMed  Google Scholar 

  • Zhong R, Pena MJ, Zhou GK, Nairn CJ, Wood-Jones A, Richardson EA, Morrison WH, Darvill AG, York WS, Ye ZH (2005) Arabidopsis fragile fiber8, which encodes a putative glucuronyltransferase, is essential for normal secondary wall synthesis. Plant Cell 17:3390–3408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Prof. Michael G. Hahn (Complex Carbohydrate Research Center, University of Georgia, USA) and Prof. J. Paul Knox (Center for Plant Sciences, Faculty of Biological Sciences, University of Leeds, United Kingdom) for kindly providing a series of monoclonal antibodies.

Funding

This work was supported by the National Natural Science Foundation of China (31370328), the National Key Technology Support Program of China (2013BAD22B01), the Qingdao Municipal Science and Technology Plan Project (11-2-4-88-jch), the Youth Innovation Promotion Association of CAS (2014187), and the Taishan Scholar Program of Shandong (to G.Z.).

Author contributions

RBH performed the mucilage phenotypic analysis, in-situ hybridization, immunolabeling and dot blotting analysis, participated in the conception of the study, data analysis, and draft of the manuscript. JLL cooperate with RBH in the immunolabeling, dot blotting, and monosaccharide composition analysis. XWY assisted in the growing of plants and extraction of seed mucilage. XZ assisted in the in situ hybridization and immunoassay. XYW performed the qRT-PCR analysis and monosaccharide composition analysis. QT performed the linkage analysis and macromolecular characterization. GH helped in the plant growth maintenance and data analysis. GKZ conceived the study and revised the manuscript. YZK helped in the discussion and revision of the manuscript. All authors have read and approved the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gongke Zhou or Yingzhen Kong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 422 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, R., Li, J., Yang, X. et al. Irregular xylem 7 (IRX7) is required for anchoring seed coat mucilage in Arabidopsis . Plant Mol Biol 92, 25–38 (2016). https://doi.org/10.1007/s11103-016-0493-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-016-0493-4

Keywords

Navigation