Skip to main content
Log in

Comparative assessments of CRISPR-Cas nucleases’ cleavage efficiency in planta

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Custom-designed nucleases can enable precise plant genome editing by catalyzing DNA-breakage at specific targets to stimulate targeted mutagenesis or gene replacement. The CRISPR-Cas system, with its target-specifying RNA molecule to direct the Cas9 nuclease, is a recent addition to existing nucleases that bind and cleave the target through linked protein domains (e.g. TALENs and zinc-finger nucleases). We have conducted a comparative study of these different types of custom-designed nucleases and we have assessed various components of the CRISPR-Cas system. For this purpose, we have adapted our previously reported assay for cleavage-dependent luciferase gene correction in Nicotiana benthamiana leaves (Johnson et al. in Plant Mol Biol 82(3):207–221, 2013). We found that cleavage by CRISPR-Cas was more efficient than cleavage of the same target by TALENs. We also compared the cleavage efficiency of the Streptococcus pyogenes Cas9 protein based on expression using three different Cas9 gene variants. We found significant differences in cleavage efficiency between these variants, with human and Arabidopsis thaliana codon-optimized genes having the highest cleavage efficiencies. We compared the activity of 12 de novo-designed single synthetic guide RNA (sgRNA) constructs, and found their cleavage efficiency varied drastically when using the same Cas9 nuclease. Finally, we show that, for one of the targets tested with our assay, we could induce a germinally-transmitted deletion in a repeat array in A. thaliana. This work emphasizes the efficiency of the CRISPR-Cas system in plants. It also shows that further work is needed to be able to predict the optimal design of sgRNAs or Cas9 variants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baltes NJ, Gil-Humanes J, Cermak T, Atkins PA, Voytas DF (2014) DNA replicons for plant genome engineering. Plant Cell 26(1):151–163

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Belhaj K, Chaparro-Garcia A, Kamoun S, Nekrasov V (2013) Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 9(1):39

    Article  PubMed Central  PubMed  Google Scholar 

  • Brooks C, Nekrasov V, Lippman Z, Van Eck J (2014) Efficient gene editing in tomato in the first generation using the CRISPR/Cas9 system. Plant Physiol 166(3):1292–1297

  • Christian M, Qi Y, Zhang Y, Voytas DF (2013) Targeted mutagenesis of Arabidopsis thaliana using engineered TAL effector nucleases. G3 (Bethesda) 3(10):1697–1705

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

    Article  CAS  PubMed  Google Scholar 

  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Doench JG, Hartenian E, Graham DB, Tothova Z, Hegde M, Smith I, Sullender M, Ebert BL, Xavier RJ, Root DE (2014) Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat Biotechnol. doi:10.1038/nbt.3026

  • Even-Faitelson L, Samach A, Melamed-Bessudo C, Avivi-Ragolsky N, Levy AA (2011) Localized egg-cell expression of effector proteins for targeted modification of the Arabidopsis genome. Plant J 68(5):929–937

    Article  CAS  PubMed  Google Scholar 

  • Farzadfard F, Perli SD, Lu TK (2013) Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas. ACS Synth Biol 2(10):604–613

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fauser F, Schiml S, Puchta H (2014) Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J 79:348–359

    Article  CAS  PubMed  Google Scholar 

  • Feng Z, Zhang B, Ding W, Liu X, Yang DL, Wei P, Cao F, Zhu S, Zhang F, Mao Y, Zhu JK (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 23:1229–1232

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Feng Z, Mao Y, Xu N, Zhang B, Wei P, Yang D-L, Wang Z, Zhang Z, Zheng R, Yang L, Zeng L, Liu X, Zhu J-K (2014) Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proc Natl Acad Sci 111(12):4632–4637

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gao J, Wang G, Ma S, Xie X, Wu X, Zhang X, Wu Y, Zhao P, Xia Q (2014) CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Mol Biol. doi:10.1007/s11103-014-0263-0

  • Isaacson T, Ronen G, Zamir D, Hirschberg J (2002) Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of b-carotene and xanthophylls in plants. Plant Cell Online 14(2):333–342

    Article  CAS  Google Scholar 

  • Jia H, Wang N (2014) Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS One 9(4):e93806

    Article  PubMed Central  PubMed  Google Scholar 

  • Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA (2013a) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31(3):233–239

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013b) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucl Acids Res 41(20):e188

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jiang W, Yang B, Weeks DP (2014) Efficient CRISPR/Cas9-mediated gene editing in Arabidopsis thaliana and inheritance of modified genes in the T2 and T3 generations. PLoS One 9(6):e99225

    Article  PubMed Central  PubMed  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-rna-guided dna endonuclease in adaptive bacterial immunity. Science 337(6096):816–821

    Article  CAS  PubMed  Google Scholar 

  • Johnson RA, Gurevich V, Levy AA (2013) A rapid assay to quantify the cleavage efficiency of custom-designed nucleases in planta. Plant Mol Biol 82(3):207–221

    Article  CAS  PubMed  Google Scholar 

  • Kachanovsky DE, Filler S, Isaacson T, Hirschberg J (2012) Epistasis in tomato color mutations involves regulation of phytoene synthase 1 expression by cis-carotenoids. Proc Natl Acad Sci 109(46):19021–19026

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lei Y, Lu L, Liu HY, Li S, Xing F, Chen LL (2014) CRISPR-P: a web tool for synthetic single-guide rna design of CRISPR-system in plants. Mol Plant 7(9):1494–1496

    Article  CAS  PubMed  Google Scholar 

  • Li L, Piatek M, Atef A, Piatek A, Wibowo A, Fang X, Sabir J, Zhu J-K, Mahfouz M (2012a) Rapid and highly efficient construction of TALE-based transcriptional regulators and nucleases for genome modification. Plant Mol Biol 78(4):407–416

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li T, Liu B, Spalding MH, Weeks DP, Yang B (2012b) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30(5):390–392

    Article  CAS  PubMed  Google Scholar 

  • Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31(8):688–691

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, Yang L, Church GM (2013a) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31(9):833–838

    Article  CAS  PubMed  Google Scholar 

  • Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013b) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miao J, Guo D, Zhang J, Huang Q, Qin G, Zhang X, Wan J, Gu H, Qu LJ (2013) Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res 23:1233–1236

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Montague TG, Cruz JM, Gagnon JA, Church GM, Valen E (2014) CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucl Acids Res 42(W1):W401–W407

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nekrasov V, Staskawicz B, Weigel D, Jones JD, Kamoun S (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31(8):691–693

    Article  CAS  PubMed  Google Scholar 

  • Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N, Ishitani R, Zhang F, Nureki O (2014) Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156(5):935–949

    Article  CAS  PubMed  Google Scholar 

  • Podevin N, Devos Y, Davies HV, Nielsen KM (2012) Transgenic or not? No simple answer! EMBO Rep 13(12):1057–1061

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Puchta H, Fauser F (2014) Synthetic nucleases for genome engineering in plants: prospects for a bright future. Plant J 78(5):727–741

    Article  CAS  PubMed  Google Scholar 

  • Ron M, Kajala K, Pauluzzi G, Wang D, Reynoso MA, Zumstein K, Garcha J, Winte S, Masson H, Inagaki S, Fn Federici, Sinha N, Deal RB, Bailey-Serres J, Brady SM (2014) Hairy Root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model. Plant Physiol 166(2):455–469

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32(4):347–355

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schiml S, Fauser F, Puchta H (2014) The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny. Plant J. doi: 10.1111/tpj.12704

  • Shaked H, Melamed-Bessudo C, Levy AA (2005) High-frequency gene targeting in Arabidopsis plants expressing the yeast RAD54 gene. PNAS 102(34):12265–12269

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shan Q, Wang Y, Chen K, Liang Z, Li J, Zhang Y, Zhang K, Liu J, Voytas DF, Zheng X, Zhang Y, Gao C (2013a) Rapid and efficient gene modification in rice and brachypodium using TALENs. Mol Plant 6(4):1365–1368

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu JL, Gao C (2013b) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31(8):686–688

    Article  CAS  PubMed  Google Scholar 

  • Sugano SS, Shirakawa M, Takagi J, Matsuda Y, Shimada T, Hara-Nishimura I, Kohchi T (2014) CRISPR/Cas9-mediated targeted mutagenesis in the liverwort Marchantia polymorpha L. Plant Cell Physiol 55(3):475–481

    Article  CAS  PubMed  Google Scholar 

  • Voytas DF (2013) Plant genome engineering with sequence-specific nucleases. Annu Rev Plant Biol 64(1):327–350

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Wei JJ, Sabatini DM, Lander ES (2014a) Genetic screens in human cells using the CRISPR-Cas9 system. Science 343(6166):80–84

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu JL (2014b) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32(9):947–951

    Article  CAS  PubMed  Google Scholar 

  • Xie K, Yang Y (2013) RNA-guided genome editing in plants using a CRISPR-Cas system. Mol Plant 6(6):1975–1983

    Article  CAS  PubMed  Google Scholar 

  • Xie K, Zhang J, Yang Y (2014) Genome-wide prediction of highly specific guide rna spacers for CRISPR-Cas9-mediated genome editing in model plants and major crops. Mol Plant 7(5):923–926

    Article  CAS  PubMed  Google Scholar 

  • Xu R, Li H, Qin R, Wang L, Li L, Wei P, Yang J (2014) Gene targeting using the Agrobacterium tumefaciens-mediated CRISPR-Cas system in rice. Rice (N Y) 7(1):1–4

    CAS  Google Scholar 

  • Zhang F, Maeder ML, Unger-Wallace E, Hoshaw JP, Reyon D, Christian M, Li X, Pierick CJ, Dobbs D, Peterson T, Joung JK, Voytas DF (2010) High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc Natl Acad Sci 107(26):12028–12033

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Y, Zhang F, Li X, Baller JA, Qi Y, Starker CG, Bogdanove AJ, Voytas DF (2013) Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiol 161(1):20–27

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang H, Zhang J, Wei P, Zhang B, Gou F, Feng Z, Mao Y, Yang L, Xu N, Zhu JK (2014) The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J 12(6):797–807

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Liu B, Weeks DP, Spalding MH, Yang B (2014) Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucl Acids Res 42(17):10903–10914

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all members of Avraham A. Levy’s laboratory at the Weizmann Institute of Science, including Dr. Cathy Melamed-Bessudo for technical advice, and Tal Dahan for her help maintaining N. benthamiana plants. We thank Prof. Holger Puchta from Karlsruhe Institute of Technology and Prof. Daniel Voytas at the University of Minnesota for providing Cas9 gene constructs. Further thanks to Prof. Sophien Kamoun from the Sainsbury Laboratory for providing another Cas9 gene construct. We also thank Dario Breitel and Prof. Asaph Aharoni who developed the A. thaliana seed genomic DNA extraction protocol that was used here. This work was funded by an EU-FP7 TRACTAR grant from the European Research Council.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ross A. Johnson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

The sequences and applications of synthesized molecules that were used in the study

The sequences and intended applications of synthesized molecules that we could not clone during the study

11103_2014_266_MOESM3_ESM.docx

Testing the CRISPR-Cas cleavage efficiency using a single sgRNA, delivered in one of two vectors, as well as using double sgRNAs with juxtaposed target sites

An additional sgRNA expression cassette was not found to increase the CRISPR-Cas cleavage efficiency in planta

11103_2014_266_MOESM5_ESM.docx

Target sites for de novo-developed CRISPR-Cas sgRNAs in the tomato (Solanum lycopersicum) phytoene synthase-encoding gene 1 (SlPSY1) and the carotene cis–trans-isomerase-encoding gene (SlCrtISO)

Features of CRISPR-Cas sgRNAs relative to their cleavage performance, for our work and reports of others

11103_2014_266_MOESM7_ESM.docx

The cleavage efficiency of the CRISPR-Cas sgRNA designed to cleave the ‘3m’ target sequences naturally repeated in the Arabidopsis thaliana CRU3 gene

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson, R.A., Gurevich, V., Filler, S. et al. Comparative assessments of CRISPR-Cas nucleases’ cleavage efficiency in planta . Plant Mol Biol 87, 143–156 (2015). https://doi.org/10.1007/s11103-014-0266-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-014-0266-x

Keywords

Navigation