Skip to main content
Log in

The phenolic profile of pea (Pisum sativum): a phytochemical and pharmacological overview

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Pisum sativum L., (Fabaceae), commonly known as dry, green or field pea, is one of the most popular and economically important legumes. It enjoys a worldwide culinary, folk, and medicinal reputation owing to its ubiquitous health-promoting nutrients, e.g. proteins, complex carbohydrates, and dietary fibres, along with a myriad of valuable phytochemicals, mostly phenolics, terpenoids, and nitrogenous compounds. Long ago, the phytochemical composition of pea plants has received considerable interest, and a vast array of phenolic principles, including flavonoids, isoflavonoids, phenolic acids, as well as other minor phenolics and phytoalexins have been characterized. The contribution of these valued metabolites to the biological potential and health outcomes of pea has also been recently approached. Therefore, this review provides a critical overview of the current phytopharmacological knowledge regarding the phenolic profile of pea, highlighting the current gaps and future research perspectives, in order to best appreciate its beneficial consumption and possible contribution to the pharmaceutical field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ABTS:

2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)

ALT:

Alanine transaminase

AST:

Aspartate transaminase

DPPH:

1,1-diphenyl 2-picryl hydrazyl

FRAP:

Ferric reducing antioxidant power

Gal:

β-D-galactopyranose

Glc:

β-D-glucopyranose

GPX:

Guaiacol peroxidase activity

HPLC:

High performance liquid chromatography

HPLC–DAD-ESI-MS:

High performance liquid chromatography-diode array detector- electrospray ionization-mass spectrometry

IC50 :

Inhibitory concentration 50%

LC-ESI-MS:

Liquid chromatography-electrospray ionization-mass spectrometry

LC-MS:

Liquid chromatography-mass spectrometry

LD50 :

Lethal dose 50%

MIC:

Minimum inhibitory concentration

ORAC:

Oxygen radical absorbance capacity

Rha:

α-L-rhamnopyranose

TAA:

Total antioxidant activity

TEAC:

Trolox-equivalent antioxidant capacity

Xyl:

β-D-xylopyranose

References

  • Abatan MO, Makinde MJ (1986) Screening of Azadirachta indica and Pisum sativum for possible antimalarial activities. J Ethnopharmacol 17:85–93

    Article  CAS  PubMed  Google Scholar 

  • Agboola S, Mofolasayo OA, Watts BM, Aluko RE (2010) Functional properties of yellow field pea (Pisum sativum L.) seed flours and the in vitro bioactive properties of their polyphenols. Food Res Int 43:582–588

    Article  CAS  Google Scholar 

  • Amarowicz R, Troszyńska A (2003) Antioxidant activity of extract of pea and its fractions of low molecular phenolics and tannins. Pol J Food Nutr Sci 12(53):10–15

    CAS  Google Scholar 

  • Amarowicz R, Karamac M, Weidner S (2001) Antioxidant activity of phenolic fraction of pea (Pisum sativum). Czech J Food Sci 19:139–142

    Article  CAS  Google Scholar 

  • Arman M (2011) LC-ESI-MS characterization of phytoalexins induced in chickpea and pea tissues in response to a biotic elicitor of Hypnea musciformis (red algae). Nat Prod Res 25:1352–1360

    Article  CAS  PubMed  Google Scholar 

  • Bailey JA (1970) Pisatin production by tissue cultures of Pisum sativum. J Gen Microbiol 61:409–415

    Article  CAS  Google Scholar 

  • Banks SW, Dewick PM (1982) (-)-Pisatin, an induced pterocarpan metabolite of abnormal configuration from Pisum sativum. Phytochemistry 21:1605–1608

    Article  CAS  Google Scholar 

  • Bisby FA, Buckingham J, Harborne JB (1994) Phytochemical dictionary of the Leguminosae. Vol. 1: plants and their constituents, 1st edn. Chapman and Hall, London

  • Burden RS, Rogers PM, Wain RL (1974) Investigations on fungicides. XVI. Natural resistance of plant roots to fungal pathogens. Ann Appl Biol 78:59–63

    Article  CAS  PubMed  Google Scholar 

  • Campos-Vega R, Loarca-Pina G, Oomah BD (2010) Minor components of pulses and their potential impact on human health. Food Res Int 43:461–482

    Article  CAS  Google Scholar 

  • Carlson RE, Dolphin D (1981) Chromatographic analysis of isoflavonoid accumulation in stressed Pisum sativum. Phytochemistry 20:2281–2284

    Article  CAS  Google Scholar 

  • Carlson RE, Dolphin D (1982) Pisum sativum stress metabolites: two cinnamylphenols and a 2′-methoxychalcone. Phytochemistry 21:1733–1736

    Article  CAS  Google Scholar 

  • Choudhary KK, Agrawal SB (2014) Ultraviolet-B induced changes in morphological, physiological and biochemical parameters of two cultivars of pea (Pisum sativum L.). Ecotox Environ Safe 100:178–187

    Article  CAS  Google Scholar 

  • Crowden RK (1982) Pseudobase of malvidin 3-rhamnosid-5-glucoside in am mutants of Pisum sativum. Phytochemistry 21:2989–2990

    Article  CAS  Google Scholar 

  • Cruickshank IAM, Perrin DR (1960) Isolation of a phytoalexin from Pisum sativum L. Nature 187:799–800

    Article  CAS  PubMed  Google Scholar 

  • Cruickshank IAM, Perrin DR (1961) Studies on phytoalexins III. The isolation, assay, and general properties of a phytoalexin from Pisum sativum L. Aust J Biol Sci 14:336–348

    Article  CAS  Google Scholar 

  • Dahl WJ, Foster LM, Tyle RT (2012) Review of the health benefits of peas (Pisum sativum L.). Br J Nutr 108:3–10

    Article  CAS  Google Scholar 

  • Daniel Z, Maria H (2000) Domestication of plants in the old world, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  • Dewick PM (2002) Medicinal natural products: a biosynthetic approach, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Dixit Y, Kar A (2009) Antioxidative activity of some vegetable peels determined in vitro by inducing liver lipid peroxidation. Food Res Int 42:1351–1354

    Article  CAS  Google Scholar 

  • Dueñas M, Estrella I, Hernández T (2004) Occurrence of phenolic compounds in the seed coat and the cotyledon of peas (Pisum sativum L.). Eur Food Res Technol 219:116–123

    Article  CAS  Google Scholar 

  • Dueñas M, Hernández T, Estrella I (2006) Assessment of in vitro antioxidant capacity of the seed coat and the cotyledon of legumes in relation to their phenolic contents. Food Chem 98:95–103

    Article  CAS  Google Scholar 

  • Duval B, Shetty K (2001) The stimulation of phenolics and antioxidant activity in pea (Pisum sativum) elicited by genetically transformed anise root extract. J Food Biochem 25:361–377

    Article  CAS  Google Scholar 

  • Evidente A, Fernández-Aparicio M, Cimmino A et al (2009) Peagol and peagoldione, two new strigolactone-like metabolites isolated from pea root exudates. Tetrahedron Lett 50:6955–6958

    Article  CAS  Google Scholar 

  • Evidente A, Cimmino A, Fernández-Aparicio M et al (2010) Polyphenols, including the new peapolyphenols A − C, from pea root exudates stimulate Orobanche foetida seed germination. J Agric Food Chem 58:2902–2907

    Article  CAS  PubMed  Google Scholar 

  • Ferreres F, Esteban E, Carpena-Ruiz R et al (1995) Acylated flavonol sophorotriosides from pea shoots. Phytochemistry 39:1443–1446

    Article  CAS  PubMed  Google Scholar 

  • Furuya M, Galston AW (1965) Flavonoid complexes in Pisum sativum L.-I: Nature and distribution of the major components. Phytochemistry 4:285–296

    Article  CAS  Google Scholar 

  • Ghorbani M, Ganjloo A, Bimakr M (2017) Evaluation the effect of different solvents on total phenolic content and antioxidant activity of pea (Pisum sativum L.) pod extract. Iranian J Food Sci Technol 14:83–92

    Google Scholar 

  • Goławska S, Kapusta I, Łukasik I, Wójcicka A (2008) Effect of phenolics on the pea aphid, Acyrthosiphon pisum (Harris) population on Pisum sativum L. (Fabaceae). Pesticides 3–4:71–77

    Google Scholar 

  • Gutiérrez-Grijalva EP, Ambriz-Pére DL, Leyva-López N et al (2016) Review: dietary phenolic compounds, health benefits and bioaccessibility. Arch Latinoam Nutr 66:87–100

    PubMed  Google Scholar 

  • Hadrich F, El-arbi M, Boukhris M et al (2014) Valorization of the peel of pea: Pisum sativum by evaluation of its antioxidant and antimicrobial activities. J Oleo Sci 63:1177–1183

    Article  CAS  PubMed  Google Scholar 

  • Hegedűsová A, Mezeyová I, Timoracká M et al (2015) Total polyphenol content and antioxidant capacity changes in dependence on chosen garden pea varieties. Potravinarstvo 9:1–8

    Google Scholar 

  • Heim K, Tagliaferro A, Bobilya D (2002) Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem 13:572–584

    Article  CAS  PubMed  Google Scholar 

  • Hertog MGL, Hollman PCH, Katan MB (1992) Content of potentially anticarcinogenic flavonoids of 28 vegetables and 9 fruits commonly consumed in the Netherlands. J Agric Food Chem 40:2379–2383

    Article  CAS  Google Scholar 

  • Ho C-H, Lin Y-T, Labbe RG, Shetty K (2006) Inhibition of Helicobacter pylori by phenolic extracts of sprouted peas (Pisum sativum L.). J Food Biochem 30:21–34

    Article  CAS  Google Scholar 

  • Ingham JL (1979) Phytoalexin production by flowers of garden pea (Pisum sativum). Z Naturforsch C 34:296–298

    Article  Google Scholar 

  • Isogai Y, Komoda Y, Okamoto T (1970) Plant growth regulators in the pea plant (Pisum sativum L.). Chem Pharm Bull 18:1872–1879

    Article  CAS  Google Scholar 

  • Jiménez-González L, Álvarez-Corral M, Muñoz-Dorado M, Rodriguez-Garcia I (2008) Pterocarpans: interesting natural products with antifungal activity and other biological properties. Phytochem Rev 7:125–154

    Article  CAS  Google Scholar 

  • Juzoń K, Skrzypek E, Czyczło-Mysza I, Marcińska I (2013) Effect of soil drought on the yield structure, protein and phenolics content in Pisum sativum and Lupinus luteus. Acta Agron Hung 61:267–278

    Article  CAS  Google Scholar 

  • Kato-Noguchi H (2003) Isolation and identification of an allelopathic substance in Pisum sativum. Phytochemistry 62:1141–1144

    Article  CAS  PubMed  Google Scholar 

  • Knuckles BE, DeFremery D, Kohler GO (1976) Coumestrol content of fractions obtained during wet processing of alfalfa. J Agric Food Chem 24:1177–1180

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi A, Akiyama K, Kawazu K (1992) A pterocarpan, (+)-2-hydroxypisatin from Pisum sativum. Phytochemistry 32:77–78

    Article  CAS  Google Scholar 

  • Kosuge S, Furuta M, Fujimura T, Matsuura T (1968) Phenolic acids in pea legumina. I. Studies on phenolic acids in plant. Gifu Daigaku Nogakubu Kenkyu Hokoku 26:100–108

    CAS  Google Scholar 

  • Lapčí́k O, Hill M, Černý I et al (1999) Immunoanalysis of isoflavonoids in Pisum sativum and Vigna radiate. Plant Sci 148:111–119

    Article  Google Scholar 

  • Lepoivre P (1982) Extraction d’ascochitine a partir de feuilles de pois infectees par Ascochyta pisi (Lib.) ou Mycospharellea pinodes (Berk. & Blox.) Vestergr. Parasitica 38:45–53

    CAS  Google Scholar 

  • Lim TK (2012) Edible medicinal and non-medicinal plants: volume 2, Fruits. Springer, Berlin, pp. 849–866

  • Liu H, Chen Y, Hu T et al (2016) The influence of light-emitting diodes on the phenolic compounds and antioxidant activities in pea sprouts. J Funct Foods 25:459–465

    Article  CAS  Google Scholar 

  • Marinangeli CP, Kassis AN, Jones PJ (2009) Glycemic responses and sensory characteristics of whole yellow pea flour added to novel functional foods. J Food Sci 74:S385–S389

    Article  CAS  PubMed  Google Scholar 

  • Martens LG, Nilsen MM, Provan F (2017) Pea hull fibre: novel and sustainable fibre with important health and functional properties. EC Nutrition 10:139–148

    Google Scholar 

  • Matscheski A, Richter D-U, Hartmann A-M et al (2006) Effects of phytoestrogen extracts isolated from rye, green and yellow pea seeds on hormone production and proliferation of trophoblast tumor cells. Horm Res Paediatr 65:276–288

    Article  CAS  Google Scholar 

  • Mehra YK, De K (2017) Determination of phytochemical, total flavonoids, and antioxidant activity of methanolic extract of Pisum sativum. IJIPSR 5:1–12

    CAS  Google Scholar 

  • Méndez J, Lojo MI (1971) Phenolic and indole constituents of edible peas. J Food Sci 36:871–872

    Article  Google Scholar 

  • Murakami T, Kohno K, Ninomiya K et al (2001) Medicinal foodstuffs. XXV. Hepatoprotective principle and structures of ionone glucoside, phenethyl glycoside, and flavonol oligoglycosides from young seedpods of garden peas, Pisum sativum L Chem Pharm Bull 49:1003–1008

    Article  CAS  PubMed  Google Scholar 

  • Neugart S, Rohn S, Schreiner M (2015) Identification of complex, naturally occurring flavonoid glycosides in Vicia faba and Pisum sativum Leaves by HPLC-DAD-ESI-MSn and the genotypic effect on their flavonoid profile. Food Res Int 76:114–121

    Article  CAS  Google Scholar 

  • Nilsson J, Stegmark R, Åkesson B (2004) Total antioxidant capacity in different pea (Pisum sativum) varieties after blanching and freezing. Food Chem 86:501–507

    Article  CAS  Google Scholar 

  • Nithiyanantham S, Selvakumar S, Siddhuraju P (2012) Total phenolic content and antioxidant activity of two different solvent extracts from raw and processed legumes, Cicer arietinum L. and Pisum sativum L. J Food Comp Anal 27:52–60

    Article  CAS  Google Scholar 

  • Oomah DB, Casper F, Malcolmson L, Ellido A-S (2011) Phenolics and antioxidant activity of lentil and pea hulls. Food Res Int 44:436–441

    Article  CAS  Google Scholar 

  • Orsák M, Lachman J, Pivec V (2000) Effect of UV-A and gamma-irradiation on the polyphenol levels in barley and pea seeds, seedlings and plants. Sci Agric Bohem 31:181–196

    Google Scholar 

  • Perrin DR, Bottomley W (1961) Pisatin: an antifungal substance from Pisum sativum L. Nature 191:76–77

    Article  CAS  PubMed  Google Scholar 

  • Pfleger FL, Harman GE (1975) Inability of storage fungi to invade pea embryos: evidence against phytoalexin involvement. Phytopathology 65:642–643

    Article  CAS  Google Scholar 

  • Pueppke SG, VanEtten HD (1975) Identification of three new pterocarpans (6a,11a-dihydro-6H-benzofuro[3,2-c][1]benzopyrans) from Pisum sativum infected with Fusarium solani f. sp. pisi. J Chem Soc Perkin Trans 1:946–948

    Article  Google Scholar 

  • Pueppke SG, VanEtten HD (1976) Accumulation of pisatin and three additional antifungal pterocarpans in Fusarium solani-infected tissues of Pisum sativum. Physiol Plant Pathol 8:51–61

    Article  CAS  Google Scholar 

  • Ratnayake W, Hoover R, Shahidi F et al (2001) Composition, molecular structure, and physicochemical properties of starches from four field pea (Pisum sativum L.) cultivars. Food Chem 74:189–202

    Article  CAS  Google Scholar 

  • Rein MJ, Renouf M, Cruz-Hernandez C et al (2013) Bioavailability of bioactive food compounds: a challenging journey to bioefficacy. Br J Clin Pharmacol 75:588–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robeson DJ, Harborne JB (1980) A chemical dichotomy in phytoalexin induction within the tribe Vicieae of the Leguminosae. Phytochemistry 19:2359–2365

    Article  CAS  Google Scholar 

  • Saeed S, Tariq P (2005) Antibacterial activities of Mentha piperita, Pisum sativum and Momordica charantia. Pak J Bot 37:997–1001

    Google Scholar 

  • Santos J, Herrero M, Mendiola JA et al (2014a) Assessment of nutritional and metabolic profiles of pea shoots: the new ready-to-eat baby-leaf vegetable. Food Res Int 58:105–111

    Article  CAS  Google Scholar 

  • Santos J, Oliveira MBPP, Ibanez E, Herrero M (2014b) Phenolic profile evolution of different ready-to-eat baby-leaf vegetables during storage. J Chromatogr A 1327:118–131

    Article  CAS  PubMed  Google Scholar 

  • Seewi G, Gnauck G, Stute R et al (1999) Effects on parameters of glucose homeostasis in healthy humans from ingestion of leguminous versus maize starches. Eur J Nutr 38:183–189

    Article  CAS  PubMed  Google Scholar 

  • Seida AA, El Tanbouly ND, Islam WT (2011) Bioassay-guided fractionation of a hepatoprotective and antioxidant extract of pea by-product. Planta Med 77:106

    Article  Google Scholar 

  • Seida AA, El Tanbouly ND, Islam WT et al (2014) Bioassay-guided fractionation of a hepatoprotective and antioxidant extract of pea by-product. Nat Prod Res 10:1–6

    Google Scholar 

  • Seida AA, El Tanbouly ND, Islam WT et al (2015) Bioassay-guided fractionation of a hepatoprotective and antioxidant extract of pea by-product. Nat Prod Res 29:1578–1583

    Article  CAS  PubMed  Google Scholar 

  • Sharma R, Punia D (2017) Effect of processing methods on antinutritional factors of field pea (Pisum sativum) Rinku. IJIRMF 3:147–152

    Google Scholar 

  • Simons R, Gruppen H, Bovee TFH et al (2012) Prenylated isoflavonoids from plants as selective estrogen receptor modulators (phytoSERMs). Food Func 3:810–827

    Article  CAS  Google Scholar 

  • Singh B, Singh JP, Kaur A, Singh N (2017) Phenolic composition and antioxidant potential of grain legume seeds: a review. Food Res Int 101:1–16

    Article  CAS  PubMed  Google Scholar 

  • Sosulski FW, Dabrowski KJ (1984) Composition of free and hydrolyzable phenolic acids in the flours and hulls of ten legume species. J Agric Food Chem 32:131–133

    Article  CAS  Google Scholar 

  • Stanisavljević NS, Ilić MD, Jovanović ŽS et al (2015) Identification of seed coat phenolic compounds from differently colored pea varieties and characterization of their antioxidant activity. Arch Biol Sci Belgrade 67:829–840

    Article  Google Scholar 

  • Stanisavljević NS, Ilić MD, Matić IZ et al (2016) Identification of phenolic compounds from seed coats of differently colored European varieties of pea (Pisum sativum L.) and characterization of their antioxidant and in vitro anticancer activities. Nutr Cancer 28:988–1000

    Article  CAS  Google Scholar 

  • Statham CM, Crowden RK, Harborne JB (1972) Biochemical genetics of pigmentation in Pisum sativum. Phytochemistry 11:1083–1088

    Article  CAS  Google Scholar 

  • Stoessl A (1972) Inermin associated with pisatin in peas inoculated with the fungus Monilinia fructicola. Can J Biochem 50:107–108

    Article  CAS  PubMed  Google Scholar 

  • Taha KF, Hetta MH, Ali ME et al (2011) The pericarp of Pisum sativum L. (Fabaceae) as a biologically active waste product. Planta Med 77:PJ22

    Article  Google Scholar 

  • Tarchevsky IA, Ageeva MV, Petrova NV et al (2017) Cycloheximide-induced phenolic burst in roots of Pisum sativum L. Appl Biochem Microbiol 53:568–572

    Article  CAS  Google Scholar 

  • Terahara N, Honda T, Hayashi M, Ishimaru K (2000) New anthocyanins from purple pods of pea (Pisum spp.). Biosci Biotechnol Biochem 64:2569–2574

    Article  CAS  PubMed  Google Scholar 

  • Timoracká M, Vollmannová A (2010) Determination of flavonoids content in coloured peas (Pisum sativum L.) in relation to cultivars dependence and storage duration under natural conditions. Potravinarstvo 4:58–62

    Google Scholar 

  • Tiwari P, Singh A, Singh U et al (2008) Chromatographical analysis of phenolic acids in different preparations of pea (Pisum sativum) and chickpea (Cicer arietinum). Internet J Altern Med 8:7–13

    Google Scholar 

  • Troszyńska A, Balasinska B (2002) Antioxidant activity of crude tannins of pea (Pisum sativum L.) seed coat and their hypocholesterolemic effect in rats. Pol J Food Nutr Sci 11(52):33–38

    Google Scholar 

  • Troszyńska A, Ciska E (2002) Phenolic compounds of seed coats of white and coloured varieties of pea (Pisum sativum L.) and their total antioxidant activity. Czech J Food Sci 20:15–22

    Article  Google Scholar 

  • Troszyńska A, Estrella I, López-Amóres ML et al (2002) Antioxidant activity of pea (Pisum sativum L.) seed coat acetone extract. LWT-Food Sci Technol 35:158–164

    Article  CAS  Google Scholar 

  • Veitch NC (2013) Isoflavonoids of the Leguminosae. Nat Prod Rep 30:988–1027

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Warkentin TD, Briggs CJ et al (1998) Total phenolics and condensed tannins in field pea (Pisum sativum L.) and grass pea (Lathyrus sativus L.). Euphytica 101:97–102

    Article  CAS  Google Scholar 

  • Weissenbck G, Hedrich R, Sachs G (1986) Secondary phenolic products in isolated guard cell, epidermal cell and mesophyll cell protoplasts from pea (Pisum sativum L.) leaves: distribution and determination. Protoplasma 134:141–148

    Article  Google Scholar 

  • Wu M-C, Hou C-Y, Jiang C-M et al (2007) A novel approach of LED light radiation improves the antioxidant activity of pea seedlings. Food Chem 101:1753–1758

    Article  CAS  Google Scholar 

  • Xu BJ, Chang SKC (2007) A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. J Food Sci 72:159–166

    Article  CAS  Google Scholar 

  • Yannai S (2012) Dictionary of food compounds with CD–ROM, 2nd edn. CRC Press, Boca Raton, London, New York

    Book  Google Scholar 

  • Zarnowski R, Kozubek A (1999) Alkylresorcinol homologs in Pisum sativum L. varieties. Z Naturforsch C 54C:44–48

    Article  Google Scholar 

  • Zia-ul-Haq M, Khan BA, Landa P et al (2012) Platelet aggregation and anti-inflammatory effects of garden pea, Desi chickpea and Kabuli chickpea. Acta Pol Pharm 69:707–711

    CAS  PubMed  Google Scholar 

  • Zia-ul-Haq M, Amarowicz R, Ahmad S, Riaz M (2013) Antioxidant potential of some pea (Pisum sativum L.) cultivars commonly consumed in Pakistan. Oxidation Commun 36:1046–1057

    CAS  Google Scholar 

  • Zilani MNH, Sultana T, Rahman SMA et al (2017) Chemical composition and pharmacological activities of Pisum sativum. BMC Complement Altern Med 17:171–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eman Zekry Attia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fahim, J.R., Attia, E.Z. & Kamel, M.S. The phenolic profile of pea (Pisum sativum): a phytochemical and pharmacological overview. Phytochem Rev 18, 173–198 (2019). https://doi.org/10.1007/s11101-018-9586-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-018-9586-9

Keywords

Navigation