Skip to main content

Advertisement

Log in

Bioactive diterpenoids from Celastraceae species

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Celastraceae species have a long tradition of use in folk medicine and agriculture. Intensive research into this family has resulted in the isolation of a large number of secondary metabolites with a wide range of bioactivity, with the most characteristic being the dihydro-β-agarofuran sesquiterpenes and the quinomethide triterpenoids. Despite diterpenoids not often being found in Celastraceae species, the novelty of their structures and their biological activities has stimulated their research. There are several reviews covering studies on Tripterigium wilfordii, a traditional Chinese medicine, and their metabolites, but none focusing on bioactive diterpenoids isolated from other Celastraceae species. This review focuses on diterpenes isolated from Celastraceae species, and their skeleton diversity, species sources, and tested biological activities are discussed. The literature from January 2000 to October 2016 is reviewed, and 64 references are cited. A total of 118 isolated diterpenoids possessing twelve different skeletons are included and classified by the following tested biological activity: cytotoxicity, anti-inflammatory, antitumour-promotion, anti-HIV, immunosuppressant, reversal multi-drug resistance, and antifeedant. This compliance information will be helpful in further research into diterpene Celastraceae isolation, biological activity determination and structure specific modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Alvarenga N, Ferro EA (2006) Bioactive triterpenes and related compounds from celastraceae. In: Atta-ur-Rahman (ed) Studies in natural products chemistry, vol 33. Elsevier, Amsterdam, pp 239–307

    Google Scholar 

  • Ankli A, Heilmann J, Heinrich M, Sticher O (2000) Cytotoxic cardenolides and antibacterial terpenoids from Crossopetalum gaumeri. Phytochemistry 54:531–537

    Article  CAS  PubMed  Google Scholar 

  • Brinker AM, Ma J, Lipsky PE, Raskin I (2007) Medicinal chemistry and pharmacology of genus Tripterygium (Celastraceae). Phytochemistry 68:732–766

    Article  CAS  PubMed  Google Scholar 

  • Callies O, Sánchez-Carrete MP, Gamarro F et al (2016) Optimization by molecular fine tuning of dihydro-β-agarofuran sesquiterpenoids as reversers of P-glycoprotein-mediated multidrug resistance. J Med Chem 59:1880–1890

    Article  CAS  PubMed  Google Scholar 

  • Chen B, Duan H, Takaishi Y (1999) Triterpene caffeoyl esters and diterpenes from Celastrus stephanotifolius. Phytochemistry 51:683–687

    Article  CAS  Google Scholar 

  • Dhillon S (2014) Trastuzumab emtansine: a review of its use in patients with her2-positive advanced breast cancer previously treated with trastuzumab-based therapy. Drugs 74:675–686

    Article  CAS  PubMed  Google Scholar 

  • Duan H, Takaishi Y, Momota H et al (2001) Immunosuppressive terpenoids from extracts of Tripterygium wilfordii. Tetrahedron 57:8413–8424

    Article  CAS  Google Scholar 

  • Gao J-M, Wu W-J, Zhang J-W et al (2007) The dihydro-β-agarofuran sesquiterpenoids. Nat Prod Rep 24:1153

    Article  CAS  PubMed  Google Scholar 

  • Gao C, Wang D, Zhang Y et al (2016) Kaurane and abietane diterpenoids from the roots of Tripterygium wilfordii and their cytotoxic evaluation. Bioorg Med Chem Lett 26:2942–2946

    Article  CAS  PubMed  Google Scholar 

  • González AG, Bazzocchi IL, Gutiérrez Luis J et al (1986) Isopimaradiene diterpenes from Rzedowskia tolantonguensis. J Chem Res (Synopsis) 12:442–446

    Google Scholar 

  • González AG, Alvarenga NL, Bazzocchi IL et al (1999) Triterpene trimers from Maytenus scutioides: cycloaddition compounds? J Nat Prod 62:1185–1187

    Article  PubMed  Google Scholar 

  • González AG, Bazzocchi IL, Moujir L, Jiménez IA (2000) Ethnobotanical uses of Celastraceae. Bioactive metabolites. In: Atta-ur-Rahman (ed) Studies in natural products chemistry, vol 23. Elsevier, Amsterdam, pp 649–738

    Google Scholar 

  • González AG, Kennedy ML, Rodríguez FM et al (2001) Absolute configuration of triterpene dimers from Maytenus species (Celastraceae). Tetrahedron 57:1283–1287

    Article  Google Scholar 

  • Gunatilaka AAL (1996) Triterpenoid quinonemethides and related compounds (celastroloids). In: Atta-ur-Rahman (ed) Progress in the chemistry of organic natural product, vol 67. Elsevier, Amsterdam, pp 1–123

    Google Scholar 

  • Halaby R (2014) Novel anticancer agent for chemoresistant cancer cells that are caspase-3 deficient. J Mol Biol Mol Imaging 1(3):8

    Google Scholar 

  • Han R, Rostami-Yazdi M, Gerdes S, Mrowietz U (2012) Triptolide in the treatment of psoriasis and other immune-mediated inflammatory diseases. Br J Clin Pharmacol 74:424–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heywood VH, Brummit RK, Culham A (2007) Flowering plants of the world. Editors-Oxford University Press, New York

    Google Scholar 

  • Inaba Y, Hasuda T, Hitotsuyanagi Y et al (2013) Abietane diterpenoids and a sesquiterpene pyridine alkaloid from Euonymus lutchuensis. J Nat Prod 76:1085–1090

    Article  CAS  PubMed  Google Scholar 

  • Jiménez-Estrada M, Reyes-Chilpa R, Hernández-Ortega S et al (2000) Two novel Diels–Alder adducts from Hippocratea celastroides roots and their insecticidal activity. Can J Chem 78:248–254

    Article  Google Scholar 

  • Kennedy ML, Llanos GG, Castanys S et al (2011) Terpenoids from Maytenus species and assessment of their reversal activity against a multidrug-resistant Leishmania tropica line. Chem Biodivers 8:2291–2298

    Article  CAS  PubMed  Google Scholar 

  • Koyama Y, Matsunami K, Otsuka H et al (2010) Microtropiosides A–F: ent-labdane diterpenoid glucosides from the leaves of Microtropis japonica (Celastraceae). Phytochemistry 71:675–681

    Article  CAS  PubMed  Google Scholar 

  • Kupchan SM, Komoda Y, Thomas GJ, Hintz HPJ (1972) Maytanprine and maytanbutine, new antileukaemic ansa macrolides from Maytenus buchananii. J Chem Soc Chem Commun 19:1065

    Article  Google Scholar 

  • Kusari S, Lamshöft M, Kusari P et al (2014) Endophytes are hidden producers of maytansine in Putterlickia roots. J Nat Prod 77:2577–2584

    Article  CAS  PubMed  Google Scholar 

  • Lawrence T, Willoughby DA, Gilroy DW (2002) Anti-inflammatory lipid mediators and insights into the resolution of inflammation. Nat Rev Immunol 2:787–795

    Article  CAS  PubMed  Google Scholar 

  • Li BL, Shen Q, Jin MN, Duan HQ (2010) Two new terpenes from Tripterygium wilfordii. Chin Chem Lett 21:827–829

    Article  Google Scholar 

  • Li XJ, Jiang ZZ, Zhang LY (2014) Triptolide: progress on research in pharmacodynamics and toxicology. J Ethnopharmacol 155:67–79

    Article  CAS  PubMed  Google Scholar 

  • Li H-M, Wan D-W, Li R-T (2015a) New abietane-type diterpene glycosides from the roots of Tripterygium wilfordii. J Asian Nat Prod Res 17:761–766

    Article  CAS  PubMed  Google Scholar 

  • Li XL, Gao LH, Li HM et al (2015b) Diterpenoids from the stems of Tripterygium hypoglaucum (Celastraceae) and cytotoxic evaluation. Phytochem Lett 12:84–89

    Article  CAS  Google Scholar 

  • Lin S, Que H, Peng H, Qian L, Guo S, Li Y (2011) Diterpene constituents of Tripterygium wilfordii (II). Acta Pharm Sin 46:942–945

    CAS  Google Scholar 

  • Liu Q (2011) Triptolide and its expanding multiple pharmacological functions. Int Immunopharmacol 11:377–383

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Dey M, Yang H et al (2007) Anti-inflammatory and immunosuppressive compounds from Tripterygium wilfordii. Phytochemistry 68:1172–1178

    Article  CAS  PubMed  Google Scholar 

  • Martín JD (1973) New diterpenoids extractives of Maytenus dispermus. Tetrahedron 29:2553–2559

    Article  Google Scholar 

  • Mehta RG, Murillo G, Naithani R, Peng X (2010) Cancer chemoprevention by natural products: how far have we come? Pharm Res 27:950–961

    Article  CAS  PubMed  Google Scholar 

  • Mirón-López G, Bazzocchi IL, Jiménez-Díaz IA et al (2014) Cytotoxic diterpenes from roots of Crossopetalum gaumeri, a Celastraceae species from Yucatan Peninsula. Bioorg Med Chem Lett 24:2105–2109

    Article  PubMed  Google Scholar 

  • Muñoz O, Penaloza A, González AG et al (1996) The Celastraceae from Latin America. chemistry and biological activity. In: Atta-ur-Rahman (ed) Studies in natural products chemistry, vol 18. Elsevier, Amsterdam, pp 739–783

    Google Scholar 

  • Naila A, Zhang YF (2015) Triptolide: a critical review on antiangiogenesis in cancer and scope in therapeutics. J Biomim Biomater Biomed Eng 23:37–46

    Article  Google Scholar 

  • Nasir S, Bukhari A, Jantan I, Seyed MA (2015) Effects of plants and isolates of Celastraceae family on cancer pathways. Anticancer Agents Med Chem 15:681–693

    Article  Google Scholar 

  • Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79:629–661

    Article  CAS  PubMed  Google Scholar 

  • Ni L, Ma J, Li CJ et al (2015) Novel rearranged and highly oxygenated abietane diterpenoids from the leaves of Tripterygium wilfordii. Tetrahedron Lett 56:1239–1243

    Article  CAS  Google Scholar 

  • Núñez MJ, Reyes CP, Jiménez IA et al (2011) ent-Rosane and abietane diterpenoids as cancer chemopreventive agents. Phytochemistry 72:385–390

    Article  PubMed  Google Scholar 

  • Pan J (2010) RNA polymerase—an important molecular target of triptolide in cancer cells. Cancer Lett 292:149–152

    Article  CAS  PubMed  Google Scholar 

  • Peters RJ (2010) Two rings in them all: the labdane-related diterpenoids. Nat Prod Rep 27:1521–1530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qui D, Kao PN (2003) Immunosuppressive and anti-inflammatory mechanisms of triptolide, the principal active diterpenoid from the Chinese medicinal herb Tripterygium wilfordii Hook. f. Drugs R&D 4:1–18

    Article  Google Scholar 

  • Rodríguez FM, López MR, Jiménez IA et al (2005) New phenolic triterpenes from Maytenus blepharodes. Semisynthesis of 6-deoxoblepharodol from pristimerin. Tetrahedron 61:2513–2519

    Article  Google Scholar 

  • Shen Q, Zhi Y, Takaishi Y et al (2008) Immunosuppressive terpenoids from Tripterygium wilfordii. Chin Chem Lett 19:453–456

    Article  CAS  Google Scholar 

  • Simmons MP, Cappa JJ, Archer RH et al (2008) Phylogeny of the Celastreae (Celastraceae) and the relationships of Catha edulis (qat) inferred from morphological characters and nuclear and plastid genes. Mol Phylogenet Evol 48:745–757

    Article  CAS  PubMed  Google Scholar 

  • Singh IP, Bodiwala HS (2010) Recent advances in anti-HIV natural products. Nat Prod Rep 27:1781–1800

    Article  CAS  PubMed  Google Scholar 

  • Spivey AC, Weston M, Woodhead S (2002) Celastraceae sesquiterpenoids: biological activity and synthesis. Chem Soc Rev 31:43–59

    Article  CAS  PubMed  Google Scholar 

  • Swingle WT, Haller HL, Siegler EH, Swingle MC (1941) A chinese insecticidal plant, Tripterygium wilfordii, introduced into the United States. Science 93:60–61

    Article  CAS  PubMed  Google Scholar 

  • Tanaka N, Ooba N, Duan H et al (2004) Kaurane and abietane diterpenoids from Tripterygium doianum (Celastraceae). Phytochemistry 65:2071–2076

    Article  CAS  PubMed  Google Scholar 

  • Tang W, Zuo J (2012) Immunosuppressant discovery from Tripterygium wilfordii Hook f: the novel triptolide analog (5R)-5-hydroxytriptolide (LLDT-8). Acta Pharmacol Sin 33:1112–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tantillo DJ (2011) Biosynthesis via carbocations: theoretical studies on terpene formation. Nat Prod Rep 28:1035–1053

    Article  CAS  PubMed  Google Scholar 

  • Wang KW, Mao JS, Tai YP, Pan YJ (2006) Novel skeleton terpenes from Celastrus hypoleucus with anti-tumor activities. Bioorganic Med Chem Lett 16:2274–2277

    Article  CAS  Google Scholar 

  • Wang C, Li C-J, Ma J et al (2015) Bioactive 18(4 → 3)-abeo-abietanoid derivatives from the leaves of Tripterygium wilfordii. RSC Adv 5:30046–30052

    Article  Google Scholar 

  • William WN, Heymach JV, Kim ES, Lippman SM (2009) Molecular targets for cancer chemoprevention. Nat Rev Drug Discov 8:213–225

    Article  CAS  PubMed  Google Scholar 

  • Xiong Y, Wang K, Pan Y et al (2006) Isolation, synthesis, and anti-tumor activities of a novel class of podocarpic diterpenes. Bioorg Med Chem Lett 16:786–789

    Article  CAS  PubMed  Google Scholar 

  • Xu R, Fidler JM, Musser JH (2005) Bioactive compounds from Tripterygium wilfordii. In: Atta-ur-Rahnman (ed) Studies in natural products chemistry, vol 32. Elsevier, Amsterdam, pp 773–801

  • Xu J, Lu J, Sun F et al (2011) Terpenoids from Tripterygium wilfordii. Phytochemistry 72:1482–1487

    Article  CAS  PubMed  Google Scholar 

  • Yao Z, Gao W, Yoshihisa T, Duan H (2007) Diterpenoid compounds from Tripterygium wilfordii and their anti-cancer activities. Chin Tradic Herb Drugs 38:1603–1616

    CAS  Google Scholar 

  • Zhang Y-W, Fan Y-S, Wang X-D, Gao W-Y, Duan H-Q (2007) Diterpenoids possessed immunosuppressive activity from Tripterygium hypoglaucum. Chin Tradic Herb Drugs 38:493–496

    CAS  Google Scholar 

  • Zhao P, Wang H, Jin DQ et al (2014) Terpenoids from Tripterygium hypoglaucum and their inhibition of LPS-induced NO production. Biosci Biotechnol Biochem 78:370–373

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Zhang WJ, Wang XM (2013) Triptolide with potential medicinal value for diseases of the central nervous system. CNS Neurosci Ther 19:76–82

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z-L, Yang Y-X, Ding J et al (2012) Triptolide: structural modifications, structure–activity relationships, bioactivities, clinical development and mechanisms. Nat Prod Rep 29:457

    Article  CAS  PubMed  Google Scholar 

  • Zi J, Mafu S, Peters RJ (2014) To gibberellins and beyond! Surveying the evolution of (di)terpenoid metabolism. Annu Rev Plant Biol 65:259–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziaei S, Halaby R (2016) Immunosuppressive, anti-inflammatory and anti-cancer properties of triptolide: a mini review. Avicenna J Phytomedicine 6:149–164

    Google Scholar 

Download references

Acknowledgements

This study was supported by the Fundación CajaCanarias SALUCAN03 and SAF2015-65113-C2-1-R MINECO, Spain projects, and by FEDER funds from the EU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel L. Bazzocchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazzocchi, I.L., Núñez, M.J. & Reyes, C.P. Bioactive diterpenoids from Celastraceae species. Phytochem Rev 16, 861–881 (2017). https://doi.org/10.1007/s11101-017-9494-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-017-9494-4

Keywords

Navigation