Skip to main content

Advertisement

Log in

Protection of pancreatic β-cell function by dietary polyphenols

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Diabetes mellitus is a complex metabolic disorder and is considered a fast-growing global health problem. Type 2 diabetes (T2D) represents the majority of total diabetes prevalence and β-cell dysfunction has been described as a crucial point for this disease development and progression. To date, all of the common anti-hyperglycaemic drugs used for diabetes management cause undesirable side effects or problems with long-term efficacy or safety and the development of alternative approaches for the prevention as well as for the treatment of T2D might be a valuable solution to meet this rising demand. In this regards, numerous epidemiological studies indicate that exposure to certain polyphenol compounds is associated with the prevention of chronic diseases, including diabetes. Here, we review growing evidence suggesting that polyphenols can modulate the activity of various molecular targets, which are known to control β-cell function, involved in the development and the progression of this diabetes. The protective effects of polyphenols on β-cell function is reported with a particular focus on the mechanism of action behind polyphenol putative bioactivity. Animal and in vitro studies selected in this review, reporting about both flavonoid and non-flavonoid compounds, highlight the direct action of polyphenols on pancreatic β-cells, stimulating insulin secretion through the activation of specific cellular targets and protecting these cells from damages mediated by oxidative stress and inflammation, both typically elevated in diabetes. Some of the reviewed studies describe polyphenol effects comparable to those exerted by many drugs commonly used in diabetes treatment, and, in some occasions, synergistic polyphenol-drug interactions. Finally, future studies need to be addressed to the effects of specific polyphenol human and microbial metabolites, which are still poorly studied, in order to better define the preventive and therapeutic approach to contrast β-cell failure and diabetes progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adewole SO, Caxton-Martins EA, Ojewole JA (2006) Protective effect of quercetin on the morphology of pancreatic beta-cells of streptozotocin-treated diabetic rats. Afr J Tradit Complement Altern Med 4:64–74

    PubMed Central  PubMed  Google Scholar 

  • Adisakwattana S, Moonsan P, Yibchok-Anun S (2008) Insulin-releasing properties of a series of cinnamic acid derivatives in vitro and in vivo. J Agric Food Chem 56:7838–7844

    Article  CAS  PubMed  Google Scholar 

  • Ae Park S, Choi MS, Cho SY et al (2006) Genistein and daidzein modulate hepatic glucose and lipid regulating enzyme activities in C57BL/KsJ-db/db mice. Life Sci 79:1207–1213

    Article  PubMed  CAS  Google Scholar 

  • Al-Numair KS, Chandramohan G, Veeramani C et al (2014) Ameliorative effect of kaempferol, a flavonoid, on oxidative stress in streptozotocin-induced diabetic rats. Redox Rep. doi:10.1179/1351000214Y.0000000117

    PubMed  Google Scholar 

  • Annadurai T, Muralidharan AR, Joseph T et al (2012) Antihyperglycemic and antioxidant effects of a flavanone, naringenin, in streptozotocin-nicotinamide-induced experimental diabetic rats. J Physiol Biochem 68:307–318

    Article  CAS  PubMed  Google Scholar 

  • Annadurai T, Thomas PA, Geraldine P (2013) Ameliorative effect of naringenin on hyperglycemia-mediated inflammation in hepatic and pancreatic tissues of Wistar rats with streptozotocin-nicotinamide-induced experimental diabetes mellitus. Free Radic Res 47:793–803

    Article  CAS  PubMed  Google Scholar 

  • Aron PM, Kennedy JA (2008) Flavan-3-ols: nature, occurrence and biological activity. Mol Nutr Food Res 52:79–104

    Article  CAS  PubMed  Google Scholar 

  • Ashcroft FM, Rorsman P (2004) Molecular defects in insulin secretion in type-2 diabetes. Rev Endocr Metab Disord 5:135–142

    Article  CAS  PubMed  Google Scholar 

  • Babu PV, Liu D, Gilbert ER (2013) Recent advances in understanding the anti-diabetic actions of dietary flavonoids. J Nutr Biochem 24:1777–1789

    Article  CAS  PubMed  Google Scholar 

  • Bahadoran Z, Mirmiran P, Azizi F (2013) Dietary polyphenols as potential nutraceuticals in management of diabetes: a review. J Diabetes Metab Disord 12:43

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bardy G, Virsolvy A, Quignard JF et al (2013) Quercetin induces insulin secretion by direct activation of L-type calcium channels in pancreatic beta cells. Br J Pharmacol 169:1102–1113

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Behloul N, Wu G (2013) Genistein: a promising therapeutic agent for obesity and diabetes treatment. Eur J Pharmacol 698:31–38

    Article  CAS  PubMed  Google Scholar 

  • Bensellam M, Laybutt DR, Jonas JC (2012) The molecular mechanisms of pancreatic beta-cell glucotoxicity: recent findings and future research directions. Mol Cell Endocrinol 364:1–27

    Article  CAS  PubMed  Google Scholar 

  • Bhakkiyalakshmi E, Shalini D, Sekar TV et al (2014) Therapeutic potential of pterostilbene against pancreatic beta-cell apoptosis mediated through Nrf2. Br J Pharmacol 171:1747–1757

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bhattacharya S, Oksbjerg N, Young JF et al (2014) Caffeic acid, naringenin and quercetin enhance glucose-stimulated insulin secretion and glucose sensitivity in INS-1E cells. Diabetes Obes Metab 16:602–612

    Article  CAS  PubMed  Google Scholar 

  • Bonora E (2008) Protection of pancreatic beta-cells: is it feasible? Nutr Metab Cardiovasc Dis 18:74–83

    Article  CAS  PubMed  Google Scholar 

  • Briaud I, Lingohr MK, Dickson LM et al (2003) Differential activation mechanisms of Erk-1/2 and p70(S6K) by glucose in pancreatic beta-cells. Diabetes 52:974–983

    Article  CAS  PubMed  Google Scholar 

  • Brunzell JD, Robertson RP, Lerner RL et al (1976) Relationships between fasting plasma glucose levels and insulin secretion during intravenous glucose tolerance tests. J Clin Endocrinol Metab 42:222–229

    Article  CAS  PubMed  Google Scholar 

  • Cai EP, Lin JK (2009) Epigallocatechin gallate (EGCG) and rutin suppress the glucotoxicity through activating IRS2 and AMPK signaling in rat pancreatic beta cells. J Agric Food Chem 57:9817–9827

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Bao S, Yang W et al (2014) Epigallocatechin gallate prevents inflammation by reducing macrophage infiltration and inhibiting tumor necrosis factor-alpha signaling in the pancreas of rats on a high-fat diet. Nutr Res 34:1066–1074

    Article  CAS  PubMed  Google Scholar 

  • Chaturvedi N (2007) The burden of diabetes and its complications: trends and implications for intervention. Diabetes Res Clin Pract 76(Suppl 1):S3–12

    Article  PubMed  Google Scholar 

  • Chen WP, Chi TC, Chuang LM et al (2007) Resveratrol enhances insulin secretion by blocking K(ATP) and K(V) channels of beta cells. Eur J Pharmacol 568:269–277

    Article  CAS  PubMed  Google Scholar 

  • Chiasson JL, Josse RG, Gomis R et al (2002) Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet 359:2072–2077

    Article  CAS  PubMed  Google Scholar 

  • Cho JM, Chang SY, Kim DB et al (2012) Effects of physiological quercetin metabolites on interleukin-1beta-induced inducible NOS expression. J Nutr Biochem 23:1394–1402

    Article  CAS  PubMed  Google Scholar 

  • Choi MS, Jung UJ, Yeo J et al (2008) Genistein and daidzein prevent diabetes onset by elevating insulin level and altering hepatic gluconeogenic and lipogenic enzyme activities in non-obese diabetic (NOD) mice. Diabetes Metab Res Rev 24:74–81

    Article  CAS  PubMed  Google Scholar 

  • Clifford MN (2000) Anthocyanins—nature, occurrence and dietary burden. J Sci Food Agric 80:1063–1072

    Article  CAS  Google Scholar 

  • Coskun O, Kanter M, Korkmaz A et al (2005) Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and beta-cell damage in rat pancreas. Pharmacol Res 51:117–123

    Article  CAS  PubMed  Google Scholar 

  • Costes S, Broca C, Bertrand G et al (2006) ERK1/2 control phosphorylation and protein level of cAMP-responsive element-binding protein: a key role in glucose-mediated pancreatic beta-cell survival. Diabetes 55:2220–2230

    Article  CAS  PubMed  Google Scholar 

  • Coward L, Smith M, Kirk M et al (1998) Chemical modification of isoflavones in soyfoods during cooking and processing. Am J Clin Nutr 68:1486S–1491S

    CAS  PubMed  Google Scholar 

  • Crozier A, Jaganath IB, Clifford MN (2009) Dietary phenolics: chemistry, bioavailability and effects on health. Natural Product Reports 26:1001–1043

    Article  CAS  PubMed  Google Scholar 

  • Crozier A, Del Rio D, Clifford MN (2010) Bioavailability of dietary flavonoids and phenolic compounds. Mol Aspects Med 31:446–467

    Article  CAS  PubMed  Google Scholar 

  • Dai X, Ding Y, Zhang Z et al (2013) Quercetin and quercitrin protect against cytokineinduced injuries in RINm5F beta-cells via the mitochondrial pathway and NF-kappaB signaling. Int J Mol Med 31:265–271

    CAS  PubMed  Google Scholar 

  • Dalle S, Burcelin R, Gourdy P (2013) Specific actions of GLP-1 receptor agonists and DPP4 inhibitors for the treatment of pancreatic beta-cell impairments in type 2 diabetes. Cell Signal 25:570–579

    Article  CAS  PubMed  Google Scholar 

  • Day AJ, Canada FJ, Diaz JC et al (2000) Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS Lett 468:166–170

    Article  CAS  PubMed  Google Scholar 

  • Del Prato S, Tiengo A (2001) The importance of first-phase insulin secretion: implications for the therapy of type 2 diabetes mellitus. Diabetes Metab Res Rev 17:164–174

    Article  PubMed  Google Scholar 

  • Del Rio D, Costa LG, Lean ME et al (2010) Polyphenols and health: what compounds are involved? Nutr Metab Cardiovasc Dis 20:1–6

    Article  PubMed  CAS  Google Scholar 

  • Del Rio D, Rodriguez-Mateos A, Spencer JP et al (2013) Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal 18:1818–1892

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Do GM, Jung UJ, Park HJ et al (2012) Resveratrol ameliorates diabetes-related metabolic changes via activation of AMP-activated protein kinase and its downstream targets in db/db mice. Mol Nutr Food Res 56:1282–1291

    Article  CAS  PubMed  Google Scholar 

  • Donovan JL, Manach C, Faulks RM et al (2006) Absorption and metabolism of dietary plant secondary metabolites. In: Crozier A, Clifford MN, Ashinara H (eds) Plant secondary metabolites: occurrence, structure and role in the human diet. Blackwell Publishing, Oxford, pp 303–351

  • Drews G, Krippeit-Drews P, Dufer M (2010) Oxidative stress and beta-cell dysfunction. Pflugers Arch 460:703–718

    Article  CAS  PubMed  Google Scholar 

  • Elmarakby AA, Ibrahim AS, Faulkner J et al (2011) Tyrosine kinase inhibitor, genistein, reduces renal inflammation and injury in streptozotocin-induced diabetic mice. Vascul Pharmacol 55:149–156

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Millan E, Ramos S, Alvarez C et al (2014) Microbial phenolic metabolites improve glucose-stimulated insulin secretion and protect pancreatic beta cells against tert-butyl hydroperoxide-induced toxicity via ERKs and PKC pathways. Food Chem Toxicol 66:245–253

    Article  CAS  PubMed  Google Scholar 

  • Forouhi NG, Wareham NJ (2010) Epidemiology of diabetes. Medicine 38:602–606

    Article  Google Scholar 

  • Frodin M, Sekine N, Roche E et al (1995) Glucose, other secretagogues, and nerve growth factor stimulate mitogen-activated protein kinase in the insulin-secreting beta-cell line, INS-1. J Biol Chem 270:7882–7889

    Article  CAS  PubMed  Google Scholar 

  • Fu Z, Zhang W, Zhen W et al (2010) Genistein induces pancreatic beta-cell proliferation through activation of multiple signaling pathways and prevents insulin-deficient diabetes in mice. Endocrinology 151:3026–3037

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fu Z, Zhen W, Yuskavage J et al (2011) Epigallocatechin gallate delays the onset of type 1 diabetes in spontaneous non-obese diabetic mice. Br J Nutr 105:1218–1225

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fu Z, Gilbert ER, Pfeiffer L et al (2012) Genistein ameliorates hyperglycemia in a mouse model of nongenetic type 2 diabetes. Appl Physiol Nutr Metab 37:480–488

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fu Z, Yuskavage J, Liu D (2013) Dietary flavonol epicatechin prevents the onset of type 1 diabetes in nonobese diabetic mice. J Agric Food Chem 61:4303–4309

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gee JM, DuPont MS, Day AJ et al (2000) Intestinal transport of quercetin glycosides in rats involves both deglycosylation and interaction with the hexose transport pathway. J Nutr 130:2765–2771

    CAS  PubMed  Google Scholar 

  • Gharib A, Faezizadeh Z, Godarzee M (2013) Treatment of diabetes in the mouse model by delphinidin and cyanidin hydrochloride in free and liposomal forms. Planta Med 79:1599–1604

    Article  CAS  PubMed  Google Scholar 

  • Gilbert ER, Liu D (2013) Anti-diabetic functions of soy isoflavone genistein: mechanisms underlying its effects on pancreatic beta-cell function. Food Funct 4:200–212

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gu L, Kelm MA, Hammerstone JF et al (2004) Concentrations of proanthocyanidins in common foods and estimations of normal consumption. J Nutr 134:613–617

    CAS  PubMed  Google Scholar 

  • Habtemariam S, Varghese GK (2014) The antidiabetic therapeutic potential of dietary polyphenols. Curr Pharm Biotechnol 15:391–400

    Article  CAS  PubMed  Google Scholar 

  • Han MK (2003) Epigallocatechin gallate, a constituent of green tea, suppresses cytokine-induced pancreatic beta-cell damage. Exp Mol Med 35:136–139

    Article  CAS  PubMed  Google Scholar 

  • Hanhineva K, Torronen R, Bondia-Pons I et al (2010) Impact of dietary polyphenols on carbohydrate metabolism. Int J Mol Sci 11:1365–1402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hartley L, Igbinedion E, Holmes J et al. (2013) Increased consumption of fruit and vegetables for the primary prevention of cardiovascular diseases. Cochrane Database Syst Rev 6:CD009874

  • Hirota S, Nishioka T, Shimoda T et al (2001) Quercetin glucosides are hydrolyzed to quercetin in human oral cavity to participate in peroxidase-dependent scavenging of hydrogen peroxide. Food Sci Technol Res 7:239–245

    Article  CAS  Google Scholar 

  • Ishisaka A, Kawabata K, Miki S et al (2013) Mitochondrial dysfunction leads to deconjugation of quercetin glucuronides in inflammatory macrophages. PLoS ONE 8:e80843

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jayaprakasam B, Vareed SK, Olson LK et al (2005) Insulin secretion by bioactive anthocyanins and anthocyanidins present in fruits. J Agric Food Chem 53:28–31

    Article  CAS  PubMed  Google Scholar 

  • Jeong SM, Kang MJ, Choi HN et al (2012) Quercetin ameliorates hyperglycemia and dyslipidemia and improves antioxidant status in type 2 diabetic db/db mice. Nutr Res Pract 6:201–207

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jung UJ, Lee MK, Park YB et al (2006) Antihyperglycemic and antioxidant properties of caffeic acid in db/db mice. J Pharmacol Exp Ther 318:476–483

    Article  CAS  PubMed  Google Scholar 

  • Kaneko YK, Takii M, Kojima Y et al (2015) Structure-dependent inhibitory effects of green tea catechins on insulin secretion from pancreatic beta-cells. Biol Pharm Bull 38:476–481

    Article  CAS  PubMed  Google Scholar 

  • Kawai Y, Nishikawa T, Shiba Y et al (2008) Macrophage as a target of quercetin glucuronides in human atherosclerotic arteries: implication in the anti-atherosclerotic mechanism of dietary flavonoids. J Biol Chem 283:9424–9434

    Article  CAS  PubMed  Google Scholar 

  • Kim EK, Kwon KB, Song MY et al (2007a) Flavonoids protect against cytokine-induced pancreatic β-cell damage through suppression of nuclear factor κB activation. Pancreas 35:e1–e9

    Article  PubMed  Google Scholar 

  • Kim EK, Kwon KB, Song MY et al (2007b) Genistein protects pancreatic beta cells against cytokine-mediated toxicity. Mol Cell Endocrinol 278:18–28

    Article  CAS  PubMed  Google Scholar 

  • Kim MK, Jung HS, Yoon CS et al (2010) EGCG and quercetin protected INS-1 cells in oxidative stress via different mechanisms. Front Biosci (Elite Ed) 2:810–817

    Article  Google Scholar 

  • Kim JH, Kang MJ, Choi HN et al (2011) Quercetin attenuates fasting and postprandial hyperglycemia in animal models of diabetes mellitus. Nutr Res Pract 5:107–111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Knowler WC, Barrett-Connor E, Fowler SE et al (2002) Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 346:393–403

    Article  CAS  PubMed  Google Scholar 

  • Knowler WC, Hamman RF, Edelstein SL et al (2005) Prevention of type 2 diabetes with troglitazone in the Diabetes Prevention Program. Diabetes 54:1150–1156

    Article  PubMed  Google Scholar 

  • Knutson KL, Hoenig M (1994) Identification and subcellular characterization of protein kinase-C isoforms in insulinoma beta-cells and whole islets. Endocrinology 135:881–886

    CAS  PubMed  Google Scholar 

  • Kobori M, Masumoto S, Akimoto Y, Takahashi Y (2009) Dietary quercetin alleviates diabetic symptoms and reduces streptozotocin-induced disturbance of hepatic gene expression in mice. Mol Nutr Food Res 53:859–868

    Article  CAS  PubMed  Google Scholar 

  • Ku CR, Lee HJ, Kim SK et al (2012) Resveratrol prevents streptozotocin-induced diabetes by inhibiting the apoptosis of pancreatic beta-cell and the cleavage of poly (ADP-ribose) polymerase. Endocr J 59:103–109

    Article  CAS  PubMed  Google Scholar 

  • Landete JM (2011) Ellagitannins, ellagic acid and their derived metabolites: a review about source, metabolism, functions and health. Food Res Int 44:1150–1160

    Article  CAS  Google Scholar 

  • Lee JS (2006) Effects of soy protein and genistein on blood glucose, antioxidant enzyme activities, and lipid profile in streptozotocin-induced diabetic rats. Life Sci 79:1578–1584

    Article  CAS  PubMed  Google Scholar 

  • Lee MJ, Lambert JD, Prabhu S et al (2004) Delivery of tea polyphenols to the oral cavity by green tea leaves and black tea extract. Cancer Epidemiol Biomark Prev 13:132–137

    Article  CAS  Google Scholar 

  • Lee JH, Song MY, Song EK et al (2009a) Overexpression of SIRT1 protects pancreatic β-cells against cytokine toxicity by suppressing the nuclear factor-κB signaling pathway. Diabetes 58:344–351

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee SJ, Kim HE, Choi SE et al (2009b) Involvement of Ca2+/calmodulin kinase II (CaMK II) in genistein-induced potentiation of leucine/glutamine-stimulated insulin secretion. Mol Cells 28:167–174

    Article  CAS  PubMed  Google Scholar 

  • Lee YE, Kim JW, Lee EM et al (2012) Chronic resveratrol treatment protects pancreatic islets against oxidative stress in db/db mice. PLoS ONE 7:e50412

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li JM, Wang W, Fan CY et al (2013) Quercetin preserves beta-cell mass and function in fructose-induced hyperinsulinemia through modulating pancreatic Akt/FoxO1 activation. Evid Based Complement Alternat Med 2013:303902

    PubMed Central  PubMed  Google Scholar 

  • Lin CY, Ni CC, Yin MC et al (2012) Flavonoids protect pancreatic beta-cells from cytokines mediated apoptosis through the activation of PI3-kinase pathway. Cytokine 59:65–71

    Article  CAS  PubMed  Google Scholar 

  • Lindstrom J, Ilanne-Parikka P, Peltonen M et al (2006) Sustained reduction in the incidence of type 2 diabetes by lifestyle intervention: follow-up of the Finnish Diabetes Prevention Study. Lancet 368:1673–1679

    Article  PubMed  Google Scholar 

  • Liu D, Zhen W, Yang Z et al (2006) Genistein acutely stimulates insulin secretion in pancreatic beta-cells through a cAMP-dependent protein kinase pathway. Diabetes 55:1043–1050

    Article  CAS  PubMed  Google Scholar 

  • Longuet C, Broca C, Costes S et al (2005) Extracellularly regulated kinases 1/2 (p44/42 mitogen-activated protein kinases) phosphorylate synapsin I and regulate insulin secretion in the MIN6 beta-cell line and islets of Langerhans. Endocrinology 146:643–654

    Article  CAS  PubMed  Google Scholar 

  • Mahmoud AM, Ashour MB, Abdel-Moneim A et al (2012) Hesperidin and naringin attenuate hyperglycemia-mediated oxidative stress and proinflammatory cytokine production in high fat fed/streptozotocin-induced type 2 diabetic rats. J Diabetes Complications 26:483–490

    Article  PubMed  Google Scholar 

  • Manach C, Williamson G, Morand C et al (2005) Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr 81:230S–242S

    CAS  PubMed  Google Scholar 

  • Marchetti P, Dotta F, Lauro D et al (2008) An overview of pancreatic beta-cell defects in human type 2 diabetes: implications for treatment. Regul Pept 146:4–11

    Article  CAS  PubMed  Google Scholar 

  • Martin MA, Fernandez-Millan E, Ramos S et al (2014) Cocoa flavonoid epicatechin protects pancreatic beta cell viability and function against oxidative stress. Mol Nutr Food Res 58:447–456

    Article  CAS  PubMed  Google Scholar 

  • Mears D (2004) Regulation of insulin secretion in islets of Langerhans by Ca(2+)channels. J Membr Biol 200:57–66

    Article  CAS  PubMed  Google Scholar 

  • Mena P, Garcia-Viguera C, Navarro-Rico J et al (2011) Phytochemical characterisation for industrial use of pomegranate (Punica granatum L.) cultivars grown in Spain. J Sci Food Agric 91:1893–1906

    Article  CAS  PubMed  Google Scholar 

  • Neveu V, Perez-Jimenez J, Vos F et al (2010) Phenol-explorer: an online comprehensive database on polyphenol contents in foods. Database 2010:bap024

  • Ock KC, Sang JC, Song WO (2007) Estimated dietary flavonoid intake and major food sources of U.S. adults. J Nutr 137:1244–1252

    Google Scholar 

  • Palsamy P, Subramanian S (2010) Ameliorative potential of resveratrol on proinflammatory cytokines, hyperglycemia mediated oxidative stress, and pancreatic beta-cell dysfunction in streptozotocin-nicotinamide-induced diabetic rats. J Cell Physiol 224:423–432

    Article  CAS  PubMed  Google Scholar 

  • Panda S, Kar A (2007) Apigenin (4′,5,7-trihydroxyflavone) regulates hyperglycaemia, thyroid dysfunction and lipid peroxidation in alloxan-induced diabetic mice. J Pharm Pharmacol 59:1543–1548

    Article  PubMed  CAS  Google Scholar 

  • Pinent M, Castell A, Baiges I et al (2008) Bioactivity of flavonoids on insulin-secreting cells. Compr Rev Food Sci Food Saf 7:299–308

    Article  Google Scholar 

  • Poitout V, Robertson RP (2008) Glucolipotoxicity: fuel excess and beta-cell dysfunction. Endocr Rev 29:351–366 

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Prabhakar PK, Prasad R, Ali S, et al (2013) Synergistic interaction of ferulic acid with commercial hypoglycemic drugs in streptozotocin induced diabetic rats. Phytomedicine 20:488–494

    Article  CAS  PubMed  Google Scholar 

  • Prasath GS, Sundaram CS, Subramanian SP (2013) Fisetin averts oxidative stress in pancreatic tissues of streptozotocin-induced diabetic rats. Endocrine 44:359–368

    Article  CAS  PubMed  Google Scholar 

  • Punithavathi VR, Prince PS, Kumar R et al (2011) Antihyperglycaemic, antilipid peroxidative and antioxidant effects of gallic acid on streptozotocin induced diabetic Wistar rats. Eur J Pharmacol 650:465–471

    Article  CAS  PubMed  Google Scholar 

  • Rahier J, Guiot Y, Goebbels RM et al (2008) Pancreatic beta-cell mass in European subjects with type 2 diabetes. Diabetes Obes Metab 10(Suppl 4):32–42

    Article  PubMed  Google Scholar 

  • Ramar M, Manikandan B, Raman T et al (2012) Protective effect of ferulic acid and resveratrol against alloxan-induced diabetes in mice. Eur J Pharmacol 690:226–235

    Article  CAS  PubMed  Google Scholar 

  • Rauter AP, Martins A, Borges C et al (2010) Antihyperglycaemic and protective effects of flavonoids on streptozotocin-induced diabetic rats. Phytother Res 24:S133–S138

    Article  PubMed  Google Scholar 

  • Rodriguez-Mateos A, Vauzour D, Krueger CG et al (2014) Bioavailability, bioactivity and impact on health of dietary flavonoids and related compounds: an update. Arch Toxicol 88:1803–1853

    Article  CAS  PubMed  Google Scholar 

  • Rouse M, Younès A, Egan JM (2014) Resveratrol and curcumin enhance pancreatic β-cell function by inhibiting phosphodiesterase activity. J Endocrinol 223:107–117

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roy M, Sen S, Chakraborti AS (2008) Action of pelargonidin on hyperglycemia and oxidative damage in diabetic rats: implication for glycation-induced hemoglobin modification. Life Sci 82:1102–1110

    Article  CAS  PubMed  Google Scholar 

  • Roy S, Metya SK, Sannigrahi S et al (2013) Treatment with ferulic acid to rats with streptozotocin-induced diabetes: effects on oxidative stress, pro-inflammatory cytokines, and apoptosis in the pancreatic β cell. Endocrine 44:369–379

    Article  CAS  PubMed  Google Scholar 

  • Sala R, Mena P, Savi M et al (2015) Urolithins at physiological concentrations affect the levels of pro-inflammatory cytokines and growth factor in cultured cardiac cells in hyperglucidic conditions. J Funct Foods 15:97–105

    Article  CAS  Google Scholar 

  • Sameermahmood Z, Raji L, Saravanan T et al (2010) Gallic acid protects RINm5F beta-cells from glucolipotoxicity by its antiapoptotic and insulin-secretagogue actions. Phytother Res 24(Suppl 1):S83–94

    Article  PubMed  Google Scholar 

  • Sartor G, Schersten B, Carlstrom S et al (1980) Ten-year follow-up of subjects with impaired glucose tolerance: prevention of diabetes by tolbutamide and diet regulation. Diabetes 29:41–49

    Article  CAS  PubMed  Google Scholar 

  • Scalbert A, Manach C, Morand C et al (2005) Dietary polyphenols and the prevention of diseases. Crit Rev Food Sci Nutr 45:287–306

    Article  CAS  PubMed  Google Scholar 

  • Scully T (2012) Diabetes in numbers. Nature 485:S2–S3

    Article  CAS  PubMed  Google Scholar 

  • Selma MV, Espin JC, Tomas-Barberan FA (2009) Interaction between phenolics and gut microbiota: role in human health. J Agric Food Chem 57:6485–6501

    Article  CAS  PubMed  Google Scholar 

  • Sharma AK, Bharti S, Ojha S et al (2011) Up-regulation of PPARγ, heat shock protein-27 and-72 by naringin attenuates insulin resistance, β-cell dysfunction, hepatic steatosis and kidney damage in a rat model of type 2 diabetes. Br J Nutr 106:1713–1723

    Article  CAS  PubMed  Google Scholar 

  • Shaw JE, Sicree RA, Zimmet PZ (2010) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 87:4–14

    Article  CAS  PubMed  Google Scholar 

  • Song EK, Hur H, Han MK (2003) Epigallocatechin gallate prevents autoimmune diabetes induced by multiple low doses of streptozotocin in mice. Arch Pharm Res 26:559–563

    Article  CAS  PubMed  Google Scholar 

  • Sorenson RL, Brelje TC, Roth C (1994) Effect of tyrosine kinase inhibitors on islets of Langerhans: evidence for tyrosine kinases in the regulation of insulin secretion. Endocrinology 134:1975–1978

    CAS  PubMed  Google Scholar 

  • Suh KS, Chon S, Oh S et al (2010) Prooxidative effects of green tea polyphenol (-)-epigallocatechin-3-gallate on the HIT-T15 pancreatic beta cell line. Cell Biol Toxicol 26:189–199

    Article  CAS  PubMed  Google Scholar 

  • Suh KS, Oh S, Woo JT et al (2012) Apigenin attenuates 2-deoxy-D-ribose-induced oxidative cell damage in HIT-T15 pancreatic β-cells. Biol Pharm Bull 35:121–126

    Article  CAS  PubMed  Google Scholar 

  • Szkudelski T (2006) Resveratrol inhibits insulin secretion from rat pancreatic islets. Eur J Pharmacol 552:176–181

    Article  CAS  PubMed  Google Scholar 

  • Szkudelski T (2008) The insulin-suppressive effect of resveratrol—an in vitro and in vivo phenomenon. Life Sci 82:430–435

    Article  CAS  PubMed  Google Scholar 

  • Szkudelski T, Szkudelska K (2015) Resveratrol and diabetes: from animal to human studies. Biochim Biophys Acta 1852:1145-1154

    Article  CAS  PubMed  Google Scholar 

  • Tuomilehto J, Lindstrom J, Eriksson JG et al (2001) Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 344:1343–1350

    Article  CAS  PubMed  Google Scholar 

  • Vessal M, Hemmati M, Vasei M (2003) Antidiabetic effects of quercetin in streptozocin-induced diabetic rats. Comp Biochem Physiol C Toxicol Pharmacol 135C:357–364

    Article  CAS  PubMed  Google Scholar 

  • Vetterli L, Brun T, Giovannoni L et al (2011) Resveratrol potentiates glucose-stimulated insulin secretion in INS-1E β-cells and human islets through a SIRT1-dependent mechanism. J Biol Chem 286:6049–6060

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Walle T, Browning AM, Steed LL et al (2005) Flavonoid glucosides are hydrolyzed and thus activated in the oral cavity in humans. J Nutr 135:48–52

    CAS  PubMed  Google Scholar 

  • Wang X, Ouyang Y, Liu J et al (2014) Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and dose-response meta-analysis of prospective cohort studies. BMJ 349:g4490

    Article  PubMed Central  PubMed  Google Scholar 

  • Wenham RM, Landt M, Easom RA (1994) Glucose activates the multifunctional Ca2+/calmodulin-dependent protein kinase II in isolated rat pancreatic islets. J Biol Chem 269:4947–4952

    CAS  PubMed  Google Scholar 

  • Whalen K, Miller S, Onge ES (2015) The role of sodium-glucose co-transporter 2 inhibitors in the treatment of Type 2 diabetes. Clin Ther 37:1150-1166

  • Whiting DR, Guariguata L, Weil C et al (2011) IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract 94:311–321

    Article  PubMed  Google Scholar 

  • Williamson G (2013) Possible effects of dietary polyphenols on sugar absorption and digestion. Mol Nutr Food Res 57:48–57

    Article  CAS  PubMed  Google Scholar 

  • Wollheim CB, Sharp GW (1981) Regulation of insulin release by calcium. Physiol Rev 61:914–973

    CAS  PubMed  Google Scholar 

  • Wu X, Beecher GR, Holden JM et al (2006) Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. J Agric Food Chem 54:4069–4075

    Article  CAS  PubMed  Google Scholar 

  • Youl E, Bardy G, Magous R et al (2010) Quercetin potentiates insulin secretion and protects INS-1 pancreatic beta-cells against oxidative damage via the ERK1/2 pathway. Br J Pharmacol 161:799–814

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Youl E, Magous R, Cros G et al (2014) MAP Kinase cross talks in oxidative stress-induced impairment of insulin secretion. Involvement in the protective activity of quercetin. Fundam Clin Pharmacol 28:608–615

    Article  CAS  PubMed  Google Scholar 

  • Yun SY, Kim SP, Song DK (2006) Effects of (-)-epigallocatechin-3-gallate on pancreatic beta-cell damage in streptozotocin-induced diabetic rats. Eur J Pharmacol 541:115–121

    Article  CAS  PubMed  Google Scholar 

  • Zamora-Ros R, Andres-Lacueva C, Lamuela-Raventos RM et al (2008) Concentrations of resveratrol and derivatives in foods and estimation of dietary intake in a Spanish population: European Prospective Investigation into Cancer and Nutrition (EPIC)-Spain cohort. Br J Nutr 100:188–196

    Article  CAS  PubMed  Google Scholar 

  • Zanotti I, Dall’Asta M, Mena P et al (2015) Atheroprotective effects of (poly)phenols: a focus on cell cholesterol metabolism. Food Funct 6:13–31

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Liu D (2011) Flavonol kaempferol improves chronic hyperglycemia-impaired pancreatic beta-cell viability and insulin secretory function. Eur J Pharmacol 670:325–332

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Ding Y, Dai X et al (2011) Epigallocatechin-3-gallate protects pro-inflammatory cytokine induced injuries in insulin-producing cells through the mitochondrial pathway. Eur J Pharmacol 670:311–316

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Chen L, Zheng J et al (2012) The protective effect of resveratrol on islet insulin secretion and morphology in mice on a high-fat diet. Diabetes Res Clin Pract 97:474–482

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhen W, Maechler P et al (2013) Small molecule kaempferol modulates PDX-1 protein expression and subsequently promotes pancreatic beta-cell survival and function via CREB. J Nutr Biochem 24:638–646

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Del Rio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dall’Asta, M., Bayle, M., Neasta, J. et al. Protection of pancreatic β-cell function by dietary polyphenols. Phytochem Rev 14, 933–959 (2015). https://doi.org/10.1007/s11101-015-9429-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-015-9429-x

Keywords

Navigation