Skip to main content
Log in

Seasonal variation in photosynthesis performance of cassava at two different growth stages under irrigated and rain-fed conditions in a tropical savanna climate

  • Original paper
  • Published:
Photosynthetica

Abstract

Seasonal variations in photosynthesis of cassava cv. Rayong 9 (RY9) under irrigated and rain-fed conditions were evaluated at the age of three and six months after planting (MAP). Photosynthetic light-response (PN/I) curves revealed that cassava leaves attained the highest maximum net photosynthetic rates (PNmax) in the rainy season, followed by the hot one, while the lowest PNmax was found in the cool season. Photosynthetic potential of the 3-month-old plants was mostly higher than that of the 6-month-old plants, and the seasonal variation in photosynthetic capacity was also more apparent in the younger plants. PN/I curves were used to predict daily net photosynthetic rate (PN) for each season based on daily average solar radiation data. The predicted PN were considerably lower than the PNmax values. This indicated that solar radiation is a limiting factor for photosynthesis, particularly in the rainy season. The data provided basic information for breeding cassava genotypes with enhanced photosynthesis during the period of unfavorable environment. Furthermore, the data are potentially useful in modeling photosynthesis and crop growth as affected by environmental factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AQE:

apparent quantum yield

C i :

intercellular CO2 concentration

E :

transpiration rate

gs:

stomatal conductance

I :

photosynthetic photon flux density

I comp :

light-compensation point

I sat :

light-saturation point

P N :

net photosynthetic rate

P gmax :

light-saturated gross photosynthetic rate

P Nmax :

maximum net photosynthetic rate

P N/I :

photosynthetic light-response curves

R 2 :

coefficient of determination

R D :

dark respiration rate

WUE:

water-use efficiency

References

  • Adjebeng-Danquah J., Gracen V.E., Offei S.K. et al.: Genetic variability in storage root bulking of cassava genotypes under irrigation and no irrigation.–Agric. Food Secur. 5: 9, 2016.

    Article  Google Scholar 

  • Alves A.A.C.: Cassava botany and physiology.–In: Hillocks R.J., Thresh J.M., Bellotti A.C. (ed.): Cassava: Biology, Production and Utilization. Pp. 67–90. CABI Publishing, New York 2002.

    Chapter  Google Scholar 

  • Aslam M., Lowe S.B., Hunt L.A.: Effect of leaf age on photosynthesis and transpiration of cassava (Manihot esculenta).–Can. J. Bot. 55: 2288–2295, 1977.

    Article  Google Scholar 

  • Bauer H., Ache P., Lautner S. et al.: The stomatal response to reduced relative humidity requires guard cell-Autonomous ABA synthesis.–Curr. Biol. 23: 53–57, 2013.

    Article  PubMed  CAS  Google Scholar 

  • Bond B.J.: Age-related changes in photosynthesis of woody plants.–Trends Plant Sci. 5: 349–353, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Calatayud P.A., Llovera E., Bois J.F. et al.: Photosynthesis in drought adapted cassava.–Photosynthetica 38: 97–104, 2000.

    Article  CAS  Google Scholar 

  • Catoni R., Granata M.U., Sartori F. et al.: Corylus avellana responsiveness to light variations: morphological, anatomical, and physiological leaf traits plasticity.–Photosynthetica 53: 35–46, 2015.

    Article  Google Scholar 

  • Chaves M.M., Flexas J., Pinheiro C.: Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cells.–Ann. Bot.-London 103: 551–560, 2009.

    Article  CAS  Google Scholar 

  • Cock J.H., Franklin D., Sandoval G. et al.: The ideal cassava plant for maximum yield.–Crop Sci. 19: 271–279, 1979.

    Article  Google Scholar 

  • de Souza A.P., Massenburg L.N., Jaiswal D. et al.: Rooting for cassava: insights into photosynthesis and associated physiology as a route to improve yield potential.–New Phytol. 213: 50–65, 2017.

    Article  PubMed  CAS  Google Scholar 

  • de Tafur S.M., El-Sharkawy M.A., Calle F.: Photosynthesis and yield performance of cassava in seasonally dry and semi-arid environments.–Photosynthetica 33: 249–257, 1997.

    Article  Google Scholar 

  • Edet M.A., Tijani-Eniola H., Lagoke S.T.O. et al.: Relationship of cassava growth parameters with yield, yield related components and harvest time in Ibadan, Southwestern Nigeria.–J. Nat. Sci. Res. 5: 87–92, 2015.

    Google Scholar 

  • El-Sharkawy M.A., Cock J.H.: Water use efficiency of cassava. I. Effects of air humidity and water stress on stomatal conductance and gas exchange.–Crop Sci. 24: 497–502, 1984.

    Article  Google Scholar 

  • El-Sharkawy M.A., Cock J.H.: Photosynthesis of cassava (Manihot esculenta).–Exp. Agr. 26: 325–340, 1990.

    Article  CAS  Google Scholar 

  • El-Sharkawy M.A., de Tafur S.M., Cadavid L.F.: Photosynthesis of cassava and its relation to crop productivity.–Photosynthetica 28: 431–438, 1993.

    Google Scholar 

  • El-Sharkawy M.A., de Tafur S.M., Cadavid L.F.: Potential photosynthesis of cassava as affected by growth conditions.–Crop Sci. 32: 1336–1342, 1992a.

    Article  Google Scholar 

  • El-Sharkawy M.A., de Tafur S.M., Lopez Y.: Eco-physiological research for breeding improved cassava cultivars in favorable and stressful environments in tropica/subtropical bio-systems.–Environ. Res. 6: 143–211, 2012.

    Google Scholar 

  • El-Sharkawy M.A., de Tafur S.M.: Comparative photosynthesis, growth, productivity, and nutrient use efficiency among tall and short stemmed rainfed cassava cultivars.–Photosynthetica 48: 173–188, 2010.

    Article  Google Scholar 

  • El-Sharkawy M.A., de Tafur S.M.: Genotypic and within canopy variation in leaf carbon isotope discrimination and its relation to short term leaf gas exchange characteristics in cassava grown under rainfed conditions in the tropics.–Photosynthetica 45: 515–526, 2007.

    Article  Google Scholar 

  • El-Sharkawy M.A., Hernandez A.D., Hershey C.: Yield stability of cassava during prolonged mid-season water-stress.–Exp. Agr. 28: 165–174, 1992b.

    Article  Google Scholar 

  • El-Sharkawy M.A.: Cassava biology and physiology.–Plant Mol. Biol. 53: 621–641, 2003.

    Article  Google Scholar 

  • El-Sharkawy M.A.: Cassava biology and physiology.–Plant Mol. Biol. 56: 481–501, 2004.

    Article  PubMed  CAS  Google Scholar 

  • El-Sharkawy M.A.: Cassava: physiological mechanisms and plant traits underlying tolerance to pro-longed drought and their application for breeding cultivars in the seasonally dry and semiarid tropics.–In: da Matta F.M. (ed.): Ecophysiology of Tropical Tree Crops. Pp 71–110. Nova Science Publishers, Hauppauge, New York 2010.

    Google Scholar 

  • El-Sharkawy M.A.: International research on cassava photosynthesis, productivity, ecophysiology, and responses to environmental stresses in the tropics.–Photosynthetica 44: 481–512, 2006.

    Article  CAS  Google Scholar 

  • El-Sharkawy M.A.: Physiological characteristics of cassava tolerance to prolonged drought in the tropics: Implications for breeding cultivars adapted to seasonally dry and semiarid environments.–Braz. J. Plant Physiol. 19: 257–286, 2007.

    Article  CAS  Google Scholar 

  • El-Sharkawy M.A.: Pioneering research on C4 photosynthesis: Implications for crop water relations and productivity in comparison to C3 cropping systems.–J. Food Agric. Environ. 7: 132–148, 2009a.

    Google Scholar 

  • El-Sharkawy M.A.: Pioneering research on C4 leaf anatomical, physiological and agronomic characteristics of tropical monocot and dicot plant species: Implications for crop water relations and productivity in comparison to C3 cropping systems.–Photosynthetica 47: 163–183, 2009b

    Article  Google Scholar 

  • El-Sharkawy M.A.: Prospects of photosynthetic research for increasing agricultural productivity, with emphasis on the tropical C4 Amaranthus and the cassava C3-C4 crops.–Photosynthetica 54: 161–184, 2016.

    Article  CAS  Google Scholar 

  • El-Sharkawy M.A.: Stress tolerant cassava: The role of integrative eco-physiology breeding research in crop improvement.–Open J. Soil Sci. 2: 162–186, 2012.

    Article  Google Scholar 

  • El-Sharkawy M.A.: Effects of humidity and wind on leaf conductance of field grown cassava.–Rev. Bras. Fisiol. Veget. 2: 17–22, 1990.

    Google Scholar 

  • FAO: Cassava, production quantity (tons) for all countries. https://doi.org/www.factfish.com/statistic/cassava%2C%20production%20quantity, 2016.

  • Fermont A.M., Asten P.J.A., Tittonell P. et al.: Closing the cassava yield gap: an analysis from small holder farms in East Africa.–Field Crop. Res. 112: 24–36, 2009.

    Article  Google Scholar 

  • Flexas J., Medrano H.: Drought inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited.–Ann. Bot.-London 89: 183–189, 2002.

    Article  CAS  Google Scholar 

  • Flexas J., Bota J., Escalona J.M. et al.: Effects of drought on photosynthesis in grapevines under field conditions: an evaluation of stomatal and mesophyll limitations.–Funct. Plant Biol. 29: 461–471, 2002.

    Article  Google Scholar 

  • Freed R.D., Nissen O.: MSTAT-C version 1.42. Michigan State University, East Lansing, Michigan 1992.

    Google Scholar 

  • Gao K., Chen F., Yuan L. et al.: A comprehensive analysis of root morphological changes and nitrogen allocation in maize in response to low-nitrogen stress.–Plant Cell Environ. 38: 740–750, 2015.

    Article  PubMed  CAS  Google Scholar 

  • Gomez K.A., Gomez A.A.: Statistical Procedures for Agricultural Research. Pp. 1–628. John Wiley & Sons, New York 1984.

    Google Scholar 

  • Habermann G., Machado E.C., Rodrigues J.D. et al.: CO2 assimilation, photosynthetic light response curves, and water relations of Pera sweet orange plants infected with Xylella fastidiosa.–Braz. J. Plant Physiol. 15: 79–87, 2003.

    Article  CAS  Google Scholar 

  • Hensel L.L., Grbic V., Baumgarten D.A. et al.: Developmental and age related processes that influence the longevity and senescence of photosynthetic tissues in Arabidopsis.–Plant Cell 5: 553–564, 1993.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heschel M.S., Sultan S.E., Glover S. et al.: Population differentiation and plastic responses to drought stress in the generalist annual Polygonum persicaria.–Int. J. Plant Sci. 165: 817–824, 2004.

    Article  Google Scholar 

  • Hikosaka K.: Leaf canopy as a dynamic system: ecophysiology and optimality in leaf turnover.–Ann. Bot.-London 95: 521–533, 2005.

    Article  CAS  Google Scholar 

  • Hikosaka K.: Optimal nitrogen distribution within a leaf canopy under direct and diffuse light.–Plant Cell Environ. 37: 2077–2085, 2014.

    Article  PubMed  CAS  Google Scholar 

  • Howeler R.H.: Cassava mineral nutrition and fertilization.–In: Hillocks R.J., Thresh J.M., Bellotti A.C. (ed.): Cassava: Biology, Production and Utilization. Pp. 115–147. CABI Publishing, New York 2002.

    Chapter  Google Scholar 

  • Kaiser E., Morales A., Harbinson J. et al.: Dynamic photosynthesis in different environmental conditions.–J. Exp. Bot. 66: 2415–2426, 2015.

    Article  PubMed  CAS  Google Scholar 

  • Keating B.A., Evenson J. P.: Effect of soil temperature on sprouting and sprout elongation of stem cuttings of cassava (Manihot esculenta Crantz).–Field Crop. Res. 2: 241–251, 1979.

    Article  Google Scholar 

  • Keeratikasikorn P.: Soil of Northeast Thailand. Pp. 81–95. Faculty of Agriculture, Khon Kaen University, Khon Kaen 1991.

    Google Scholar 

  • Khalifa A.J.N.: On the effect of cover tilt angle of the simple solar still on its productivity in different season and latitudes.–Energ. Convers. Manage. 52: 431–436, 2011.

    Article  Google Scholar 

  • Kitajima K., Mulkey S.S., Wright J.: Variation in crown light utilization characteristics among tropical canopy trees.–Ann. Bot.-London 95: 535–547, 2005.

    Article  Google Scholar 

  • Lachapelle P.P., Shipley B.: Interspecific prediction of photosynthetic light response curves using specific leaf mass and leaf nitrogen content: effects of differences in soil fertility and growth irradiance.–Ann. Bot.-London 109: 1149–1157, 2012.

    Article  CAS  Google Scholar 

  • Lahai T.: Influence of canopy structure on yield of cassava cultivars at various consequences of an inland valley agroecosystem.–J. Agric. Biotech. Sustain. Dev. 5: 36–47, 2013.

    Article  Google Scholar 

  • Lawlor D.W.: Photosynthesis: Molecular, Physiological and Environment Processes, 3rd ed. Pp. 9–318. Bios Sci. Publ., Oxford, 2001.

    Google Scholar 

  • Lawson T., von Caemmerer S., Baroli I.: Photosynthesis and stomatal behavior.–Prog. Bot. 72: 265–304, 2010.

    Google Scholar 

  • Lenis J.I., Calle F., Jaramillo G. et al.: Leaf retention and cassava productivity.–Field Crop. Res. 95: 126–134, 2006.

    Article  Google Scholar 

  • Lin M., Wang Z., He L. et al.: Plant photosynthesis irradiance curve responses to pollution shown non-competitive inhibited Michaelis-Kinetics.–PLoS ONE 10: e0142712, 2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lobo F.D.A., de Barros M.P., Dalmagro H.J. et al.: Fitting net photosynthetic light-response curves with Microsoft Excel–a critical look at the models.–Photosynthetica 51: 445–456, 2013.

    Article  CAS  Google Scholar 

  • Mulualem T., Bekeko Z.: Assessment of conventional breeding on cassava and its physiological adaptive mechanisms: implication for moisture stress.–Asian J. Agric. Res. 9: 38–54, 2015.

    Article  Google Scholar 

  • Murchie E.H., Hubbart S., Chen Y. et al.: Acclimation of rice photosynthesis to irradiance under field conditions.–Plant Physiol. 130: 1999–2010, 2002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nassar N., Ortiz R.: Breeding cassava to feed the poor.–Sci. Am. 302: 78–84, 2010.

    Article  PubMed  Google Scholar 

  • Newby J.: Cassava in Asia: Exposing the drivers and trajectories of the hidden ingredient in global supply chains. World Congress on Roots and Tubers Crops 18–22 January 2016, Nanning, China 2016.

    Google Scholar 

  • Niinemets Ü.: Leaf age dependent changes in within-canopy variation in leaf functional traits: a meta-analysis.–J. Plant Res. 129: 313–338, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  • Niinemets Ü., Keenan T.F., Hallik L.: Tansley review. A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types.–New Phytol. 205: 973–993, 2015.

    Article  PubMed  CAS  Google Scholar 

  • Okogbenin E., Setter T.L., Ferguson M. et al.: Phenotypic approaches to drought in cassava: review.–Front. Physiol. 4: 1–15, 2013.

    Article  Google Scholar 

  • Outlaw W.H., Jr.: Integration of cellular and physiological functions of guard cells.–Crit. Rev. Plant Sci. 22: 503–529, 2003.

    Article  Google Scholar 

  • Pellet D., El-Sharkawy M. A.: Cassava varietal response to phosphorus fertilization. I. Yield, biomass and gas exchange.–Field Crop. Res. 35: 1–11, 1993.

    Article  Google Scholar 

  • Pignon C.P., Jaiswal D., McGrath J.M. et al.: Loss of photosynthetic efficiency in the shade. An Achilles heel for the dense modern stands of our most productive C4 crops?–J. Exp. Bot. 68: 335–345, 2017.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prammanee S., Kamprerasart K., Salakan S. et al.: Growth and starch content evaluation on newly released cassava cultivars, Rayong 9, Rayong 7 and Rayong 80 at different harvest times.–Kasetsart J.-Nat. Sci. 44: 558–563, 2010.

    Google Scholar 

  • Pujol B., Salager J.L., Beltran M. et al.: Photosynthesis and leaf structure in domesticated cassava (Euphorbiaceae) and a close wild relative: have leaf photosynthetic parameters evolved under domestication.–Biotropica 40: 305–312, 2008.

    Article  Google Scholar 

  • Ribeiro R.V., Machado E.C., Santos M.G. et al.: Photosynthesis and water relations of well-watered orange plants as affected by winter and summer conditions.–Photosynthetica 47: 215–222, 2009.

    Article  Google Scholar 

  • Rosenthal D.M., Slattery R.A., Miller R.E. et al.: Cassava about-FACE: greater than expected yield stimulation of cassava (Manihot esculenta) by future CO2 levels.–Glob. Change Biol. 18: 2661–2675, 2012.

    Article  Google Scholar 

  • Takeuchi Y., Kubiske M.E., Isebrands J.G. et al.: Photosynthesis, light and nitrogen relationships in a young deciduous forest canopy under open air CO2 enrichment.–Plant Cell Environ. 24: 1257–1268, 2001.

    Article  CAS  Google Scholar 

  • Talbott L.D., Rahveh E., Zeiger E.: Relative humidity is a key factor in the acclimation of the stomatal response to CO2.–J. Exp. Bot. 54: 2141–2147, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Thai Meteorological Department: Season of Thailand. Dryad Digital Repository. https://doi.org/www.tmd.go.th/info/info.php?FileID=53, 2016.

  • Vongkasem W, Klakhaeng K., Hemvijit S. et al.: Reducing soil erosion in cassava production systems in Thailand: A farmer participatory approach. Proc. 6th Regional Workshop on Cassava’s Potential in Asia in the 21st Century: Present Situation and Future Research and Development Needs, 21–25 Feb 2000. Pp. 402–412. Ho Chi Minh City, Vietnam 2000.

    Google Scholar 

  • Zhang S., Ma K., Chen L.: Response of photosynthetic plasticity of Paeonia suffruticosa to changed light environments.–Environ. Exp. Bot. 49: 121–133, 2003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Theerakulpisut.

Additional information

Acknowledgements: This project was financially supported by the Thailand Research Organizations Network (TRON) administered by the National Science and Technology Development Agency (NSTDA). The authors also acknowledge the Thailand Research Fund (Project code: IRG5780003) and Faculty of Agriculture, Khon Kaen University for providing financial support for manuscript preparation activities.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vongcharoen, K., Santanoo, S., Banterng, P. et al. Seasonal variation in photosynthesis performance of cassava at two different growth stages under irrigated and rain-fed conditions in a tropical savanna climate. Photosynthetica 56, 1398–1413 (2018). https://doi.org/10.1007/s11099-018-0849-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-018-0849-x

Additional key words

Navigation