Skip to main content
Log in

Changes in winter snow depth affects photosynthesis and physiological characteristics of biological soil crusts in the Tengger Desert

  • Original paper
  • Published:
Photosynthetica

Abstract

Water availability is a major limiting factor in desert ecosystems. However, a winter snowfall role in the growth of biological soil crusts is still less investigated. Here, four snow treatments were designed to evaluate the effects of snow depth on photosynthesis and physiological characteristics of biological soil crusts. Results showed that snow strongly affected the chlorophyll fluorescence properties. The increased snow depth led to increased contents of photosynthetic pigments and soluble proteins. However, all biological soil crusts also exhibited a decline in malondialdehyde and soluble sugar contents as snow increased. Results demonstrated that different biological soil crusts exhibited different responses to snow depth treatment due to differences in their morphological characteristics and microhabitat. In addition, interspecies differentiation in response to snow depth treatment might affect the survival of some biological soil crusts. Further, this influence might lead to changes in the structural composition and functional communities of biological soil crusts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BSC:

biological soil crusts

Car:

carotenoid

Chl:

chlorophyll

Fv/Fm :

the maximum photochemical efficiency

MDA:

malondialdehyde

Yield:

the effective photochemical quantum yield of PSII

References

  • Abed R.M., Polerecky L., Al-Habsi A. et al.: Rapid recovery of cyanobacterial pigments in desiccated biological soil crusts following addition of water.–PLoS ONE 9: e112372, 2014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ashraf M., Harris P.J.C.: Photosynthesis under stressful environments: An overview.–Photosynthetica 51: 163–190, 2013.

    Article  CAS  Google Scholar 

  • Auton M., Rösgen J., Sinev M. et al.: Osmolyte effects on protein stability and solubility: A balancing act between backbone and side-chains.–Biophys. Chem. 159: 90–99, 2011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bates L.S., Waldren R.P., Teare I.D.: Rapid determination of free proline for water stress studies.–Plant Soil 39: 205–207, 1973.

    Article  CAS  Google Scholar 

  • Belnap J., Phillips S.L., Miller M.E.: Response of desert biological soil crusts to alterations in precipitation frequency.–Oecologia 141: 306–316, 2004.

    Article  PubMed  Google Scholar 

  • Bosiö J., Stiegler, C., Johansson M. et al.: Increased photosynthesis compensates for shorter growing season in subarctic tundra–8 years of snow accumulation manipulations.–Climatic Change 127: 321–334, 2014.

    Article  Google Scholar 

  • Bowker M.A., Belnap J., Büdel B. et al.: Controls on distribution patterns of biological soil crusts at micro to global scales.–In: Weber B., Büdel B., Belnap J. (ed.): Biological Soil Crusts: An Organizing Principle in Drylands, Ecological Studies. Pp. 173–197. Springer, Berlin 2016.

    Chapter  Google Scholar 

  • Bradford M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye-binding.–Anal. Biochem. 72: 248–254, 1976.

    Article  PubMed  CAS  Google Scholar 

  • Callaghan T.V., Johansson M., Brown R.D. et al.: The changing face of Arctic snow cover: A synthesis of observed and projected changes.–AMBIO 40: 17–31, 2011.

    Article  Google Scholar 

  • Cazzonelli C.I., Pogson B.J.: Source to sink: regulation of carotenoid biosynthesis in plants.–Trends Plant Sci. 15: 266–274, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Castillo-Monroy A.P., Maestre F.T., Delgado-Baquerizo M., Gallardo A.: Biological soil crusts modulate nitrogen availability in semi-arid ecosystems: insights from a Mediterranean grassland.–Plant Soil 333: 21–34, 2010.

    Article  CAS  Google Scholar 

  • Chaudhary V.B., Bowker M.A., O’Dell T.E. et al.: Untangling the biological contributions to soil stability in semiarid shrublands.–Ecol. Appl. 19: 110–122, 2009.

    Article  PubMed  Google Scholar 

  • Colesie C., Green T.G.A., Raggio J., Büdel B.: Summer activity patterns of Antarctic and high alpine lichen-dominated biological soil crusts–Similar but different?–Arct. Antarct. Alp. Res. 48: 449–460, 2016.

    Article  Google Scholar 

  • Domonkos I., Kis M., Gombos Z., Ughy B.: Carotenoids, versatile components of oxygenic photosynthesis.–Prog. Lipid Res. 52: 539–561, 2013.

    Article  PubMed  CAS  Google Scholar 

  • Eldridge D.J., Bowker M.A., Maestre F.T. et al.: Interactive effects of three ecosystem engineers on infiltration in a semiarid Mediterranean Grassland.–Ecosystems 13: 499–510, 2010.

    Article  Google Scholar 

  • Evans R.D., Fonda R.W.: The influence of snow on subalpine meadow community pattern, North Cascades, Washington.–Can. J. Bot. 68: 212–220, 1990.

    Article  Google Scholar 

  • Gharibi S., Tabatabaei B.E.S., Saeidi G., Goli S.A.H.: Effect of drought stress on total phenolic, lipid peroxidation, and antioxidant activity of Achillea species.–Appl. Biochem. Biotech. 178: 796–809, 2016.

    Article  CAS  Google Scholar 

  • Grote E.E., Belnap J., Housman D.C., Sparks J.P.: Carbon exchange in biological soil crust communities under differential temperatures and soil water contents: implications for global change.–Glob. Change Biol. 16: 2763–2774, 2010.

    Article  Google Scholar 

  • Hashimoto H., Uragami C., Cogdell R.J.: Carotenoids and photosynthesis.–Subcell. Biochem. 79: 111–139, 2016.

    Article  PubMed  CAS  Google Scholar 

  • Havaux M., Kloppstech K.: The protective functions of carotenoid and flavonoid pigments against excess visible radiation at chilling temperature investigated in Arabidopsis npq and tt mutants.–Planta 213: 953–966, 2001.

    Article  CAS  Google Scholar 

  • Havaux M., Ksas B., Szewczyk A. et al.: Vatamin B6 deficient plants display increased sensitivity to high light and photooxidative stress.–BMC Plant Biol. 9: 130–151, 2009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hui R., Li X.R., Chen C.Y. et al.: Responses of photosynthetic properties and chloroplast ultrastructure of Bryum argenteum from a desert biological soil crust to elevate ultraviolet-B radiation.–Physiol. Plantarum 147: 489–501, 2013.

    Article  CAS  Google Scholar 

  • Hui R., Li X.R., Zhao R.M. et al.: UV-B radiation suppresses chlorophyll fluorescence, photosynthetic pigment and antioxidant systems of two key species in soil crusts from the Tengger Desert, China.–J. Arid Environ. 113: 6–15, 2015.

    Article  Google Scholar 

  • IPCC.: Climate Change 2007: Synthesis Report, Summary for Policymakers. IPCC Plenary XXVII. Pp. 17–20. IPCC, Valencia 2007.

  • Jia R.L., Li X.R., Liu L.C. et al.: Differential wind tolerance of soil crust mosses explains their micro-distribution in nature.–Soil Biol. Biochem. 45: 31–39, 2012.

    Article  CAS  Google Scholar 

  • Karsten U., Lembcke S., Schumann R.: The effects of ultraviolet radiation on photosynthetic performance, growth and sunscreen compounds in aeroterrestrial biofilm algae isolated from building facaded.–Planta 225: 991–1000, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Kogawara S., Yamanoshita T., Norisada M. et al.: Photosynthesis and photoassimilate transport during root hypoxia in Melaleuca cajuputi, a flood-tolerant species, and in Eucalyptus camaldulensis, a moderately flood-tolerant species.–Tree Physiol. 26: 1413–1423, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Kummerová M., Krulová J., Zezulka Š., Tríska J.: Evaluation of fluoranthene phytotoxicity in pea plants by Hill reaction and chlorophyll fluorescence.–Chemosphere 65: 489–496, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Lan S.B., Wu L., Zhang D.L., Hu C.X.: Successional stages of biological soil crusts and their microstructure variability in Shapotou region (China).–Environ. Earth Sci. 65: 77–88, 2012.

    Article  Google Scholar 

  • Lan S.B., Wu L., Zhang D.L. et al.: Ethanol outperforms multiple solvents in the extraction of chlorophyll a from biological soil crusts.–Soil Biol. Biochem. 43: 857–861, 2011.

    Article  CAS  Google Scholar 

  • Lange O.L., Belnap J., Reichenberger H.: Photosynthesis of the cyanobacterial soil-crust lichen Collema tenax from arid lands in southern Utah, USA: role of water content on light and temperature responses of CO2 exchange.–Funct. Ecol. 12: 195–202, 1998.

    Article  Google Scholar 

  • Li J.H., Li X.R., Chen C.Y.: Degradation and reorganization of thylakoid protein complexes of Bryum argenteum in response to dehydration and rehydration.–Bryologist 117: 110–118, 2014.

    Article  Google Scholar 

  • Li X.R.: Study on Eco-Hydrology of Desert Biological Soil Crusts. Pp. 431–463. High Education Press, Beijing 2012.

    Google Scholar 

  • Li X.R., Jia R.L. Chen Y.W. et al.: Association of ant nests with successional stages of biological soil crusts in the Tengger Desert, Northern China.–Appl. Soil Ecol. 47: 59–66, 2011.

    Article  Google Scholar 

  • Li X.R., Jia X.H., Long L.Q., Zerbe S.: Effect of biological soil crusts on seed bank, germination and establishment of two desert annual plants.–Plant Soil 277: 375–385, 2005.

    Article  CAS  Google Scholar 

  • Li X.R., Zhang J.G., Wang X.P. et al.: Study on soil microbiotic crust and its influences on sand-fixing vegetation in arid desert region.–Acta Bot. Sin. 42: 965–970, 2000.

    Google Scholar 

  • Lu Y., Li X.R., He M.Z. et al.: Nickel effects on growth and antioxidative enzymes activities in desert plant Zygophyllum xanthoxylon (Bunge) Maxim.–Sci. Cold Arid Reg. 2: 436–444, 2010.

    Google Scholar 

  • Mafakheri A., Siosemardeh A., Bahramnejad B. et al.: Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars.–Aust. J. Crop Sci. 4: 580–585, 2010.

    CAS  Google Scholar 

  • Melick D.R., Seppelt R.D.: Loss of soluble carbohydrate and changes in freezing point of Antarctic bryophytes after leaching and repeated freeze-thaw cycles.–Antarct. Sci. 4: 399–404, 1992.

    Article  Google Scholar 

  • Mondoni A., Rossi G., Orsenigo S., Probert R.J.: Climate warming could shift the timing of seed germination in alpine plants.–Ann. Bot.-London 110: 155–164, 2012.

    Article  Google Scholar 

  • Olsen M.S., Callaghan T.V., Reist J.D. et al.: The changing arctic cryosphere and likely consequences: an overview.–AMBIO 40: 111–118, 2011.

    Article  Google Scholar 

  • Peng Q., Zhou Q.: Influence of lanthanum on chloroplast ultrastructure of soybean leaves under ultraviolet-B stress.–J. Rare Earth. 27: 304–307, 2009.

    Article  Google Scholar 

  • Perata P., Armstrong W., Voesenek L.A.C.J.: Plants and flooding stress.–New Phytol. 190: 269–273, 2011.

    Article  PubMed  Google Scholar 

  • Sala O.E., Lauenroth W.K.: Small rainfall events: an ecological role in semiarid regions.–Oecologia 53: 301–304, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Salguero-Gómez R., Siewert W., Casper B.B., Tielbörger K.: A demographic approach to study effects of climate change in desert plants.–Philos. T. Roy. Soc. B 367: 3100–3114, 2012.

    Article  Google Scholar 

  • Sara K., Abbaspour H., Sinaki J.M., Makarian H.: Effects of water deficit and chitosan spraying on osmotic adjustment and soluble protein of cultivars castor bean (Ricinus communis L.).–J. Stress Physiol. Biochem. 8: 160–169, 2012.

    Google Scholar 

  • Seyyednejad M.S., Koochak H.: A study on air pollution effects on Eucalyptus camaldulensis.–In: International Conference on Environmental, Biomedical and Biotechnology. Pp. 98–101. IPCBEE. IACSIT Press, Singapore 2011.

    Google Scholar 

  • Sharmila P., Pardha Saradhi P.: Proline accumulation in heavy metal stressed plants: an adaptive strategy.–In: Prasad M.N.V., Strzalka K. (ed.): Physiology and Biochemistry of Metal Toxicity and Tolerance in Plants. Pp. 179–199. Kluwer, Dordrecht 2010.

    Google Scholar 

  • Singh N.K., LaRosa P.C., Handa A.K. et al.: Hormonal regulation of protein synthesis associated with salt tolerance in plant cells.–P. Natl. Acad. Sci. USA 84: 739–743, 1987.

    Article  CAS  Google Scholar 

  • Sponseller R.A.: Precipitation pulses and soil CO2 flux in a Sonoran Desert ecosystem.–Glob. Change Biol. 13: 426–436, 2007.

    Article  Google Scholar 

  • Tan B., Wu F.Z., Yang W.Q., He X.H.: Snow removal alters soil microbial biomass and enzyme activity in a Tibetan alpine forest.–Appl. Soil Ecol. 76: 34–41, 2014.

    Article  Google Scholar 

  • Tang B., Xu S.Z., Zou X.L. et al.: Changes of antioxidative enzymes and lipid peroxidation in leaves and roots of waterlogging-tolerant and waterlogging-sensitive maize genotypes at seedling stage.–Agr. Sci. China 9: 651–661, 2010.

    Article  CAS  Google Scholar 

  • Thomas A.D., Hoon S.R., Linton P.E.: Carbon dioxide fluxes from cyanobacteria crusted soils in the Kalahari.–Appl. Soil Ecol. 39: 254–263, 2008.

    Article  Google Scholar 

  • Wei J., Yuen E.Y., Liu W. et al.: Estrogen protects against the detrimental effects of repeated stress on glutamatergic transmission and cognition.–Mol. Psychiatr. 19: 588–598, 2014.

    Article  CAS  Google Scholar 

  • Wilson B.C., Jacobs D.F.: Chlorophyll fluorescence of stem cambial tissue reflects dormancy development in Juglans nigra seedlings.–New Forest. 43: 771–778, 2012.

    Article  Google Scholar 

  • Wipf S., Rixen C.: A review of snow manipulation experiments in Arctic and alpine tundra ecosystems.–Polar Res. 29: 95–109, 2010.

    Article  Google Scholar 

  • Wu L., Lei Y., Lan S., Hu C.: Photosynthetic recovery and acclimation to excess light intensity in the rehydrated lichen soil crusts.–PLoS ONE 12: e0172537, 2017.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao R.M., Hui R., Wang Z.R. et al.: Winter snowfall can have a positive effect on photosynthetic carbon fixation and biomass accumulation of biological soil crusts from the Gurbantunggut Desert, China.–Ecol. Res. 31: 251–262, 2016.

    Article  CAS  Google Scholar 

  • Zhao Y., Li X.R., Zhang Z.S. et al.: Biological soil crusts influence carbon release responses following rainfall in a temperate desert, northern China.–Ecol. Res. 29: 889–896, 2014.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Zhao.

Additional information

Acknowledgements: This study was jointly supported by the National Natural Science Foundation of China (Nos. 41621001, 41701104, 41530746) and West Light Program for Talent Cultivation of Chinese Academy of Sciences.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hui, R., Zhao, R.M., Liu, L.C. et al. Changes in winter snow depth affects photosynthesis and physiological characteristics of biological soil crusts in the Tengger Desert. Photosynthetica 56, 1304–1312 (2018). https://doi.org/10.1007/s11099-018-0838-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-018-0838-0

Additional key words

Navigation