Skip to main content

Advertisement

Log in

Role of alternative oxidase pathway in protection against drought-induced photoinhibition in pepper leaves

  • Original paper
  • Published:
Photosynthetica

Abstract

The aim of this study was to assess the impact of the mitochondrial alternative oxidase (AOX) pathway on energy metabolism in chloroplasts, and evaluate the importance of the AOX in alleviating drought-induced photoinhibition in pepper (Capsicum annuum L.). Inhibition of AOX pathway decreased photosynthesis and increased thermal energy dissipation in plants under normal conditions. It indicated that AOX pathway could influence chloroplast energy metabolism. Drought reduced carbon assimilation. Photoinhibition was caused by excess of absorbed light energy in spite of the increase of thermal energy dissipation and cyclic electron flow around PSI (CEF-PSI). Upregulation of AOX pathway in leaves experiencing drought would play a critical role in protection against photoinhibition by optimization of carbon assimilation and PSII function, which would avoid over-reduction of photosynthetic electron transport chain. However, inhibition of AOX pathway could be compensated by increasing the thermal energy dissipation and CEF-PSI under drought stress, and the compensation of CEF-PSI was especially significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AOX:

alternative oxidase

AQY:

apparent quantum yield

CEF-PSI:

cyclic electron flow around PSI

DM:

dry mass

ETR:

photosynthetic electron transport rate

F0 :

minimal fluorescence yield of the dark-adapted state

Fm :

maximal fluorescence yield of the dark-adapted state

FM:

fresh mass

Fv/Fm :

maximal quantum yield of PSII photochemistry

LSP:

photosynthetic light-saturation points

NPQ:

nonphotochemical quenching coefficient

Pm :

maximal P700 changes

P max :

maximum net photosynthetic rate

P N :

net photosynthetic rate

PEG:

polyethylene glycol

qP:

photochemical quenching coefficient

RLCs:

rapid light curves

RWC:

relative water content

SHAM:

salicylhydroxamic acid

TM:

turgid mass

VKCN:

AOX pathway capacity

Vt :

total respiration rate

ΦPSI:

photochemical quantum yield of PSI

ΦPSII :

effective quantum yield of PSII photochemistry

References

  • Allakhverdiev S.I.: Recent progress in the studies of structure and function of photosystem II.–J. Photoch. Photobio. B 104: 1–8, 2011.

    Article  CAS  Google Scholar 

  • Allakhverdiev S.I., Klimov V.V., Carpentier R.: Evidence for the involvement of cyclic electron transport in the protection of photosystem II against photoinhibition: influence of a new phenolic compound.–Biochemistry 36: 4149–4154, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Asada K.: The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons.–Annu. Rev. Plant Biol. 50: 601–639, 1999.

    Article  CAS  Google Scholar 

  • Bartoli C.G., Gomez F., Gergoff G. et al.: Up-regulation of the mitochondrial alternative oxidase pathway enhances photosynthetic electron transport under drought conditions.–J. Exp. Bot. 56: 1269–1276, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Boyer J.S.: Plant productivity and environment.–Science 218: 443–448, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Clifton R., Lister R., Parker K.L. et al.: Stress-induced coexpression of alternative respiratory chain components in Arabidopsis thaliana.–Plant Mol. Biol. 58: 193–212, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Dahal K., Martyn G.D., Vanlerberghe G.C.: Improved photosynthetic performance during severe drought in Nicotiana tabacum overexpressing a nonenergy conserving respiratory electron sink.–New Phytol. 208: 382–395, 2015.

    Article  PubMed  CAS  Google Scholar 

  • Dahal K., Wang J., Martyn G.D. et al.: Mitochondrial alternative oxidase maintains respiration and preserves photosynthetic capacity during moderate drought in Nicotiana tabacum.–Plant Physiol. 166: 1560–1574, 2014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Demmig-Adams B., Adams III.W.W.: The role of xanthophyll cycle carotenoids in the protection of photosynthesis.–Trends Plant Sci. 1: 21–26, 1996.

    Article  Google Scholar 

  • Eichelmann H., Talts E., Oja V. et al.: Rubisco in planta kcat is regulated in balance with photosynthetic electron transport.–J. Exp. Bot. 60: 4077–4088, 2009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Erice G., Louahlia S., Irigoyen J.J. et al.: Water use efficiency, transpiration and net CO2 exchange of four alfalfa genotypes submitted to progressive drought and subsequent recovery.–Environ. Exp. Bot. 72: 123–130, 2011.

    Article  Google Scholar 

  • Feng H.Q., Tang S.Z., Sun K. et al.: Cyanide-resistant respiratory pathway is involved in the high-light systemic acquired acclimation of kidney bean (Phaseolus vulgaris).–Photosynthetica 53: 195–200, 2015.

    Article  CAS  Google Scholar 

  • Foyer C.H., Vanacker H., Gomez L.D. et al.: Regulation of photosynthesis and antioxidant metabolism in maize leaves at optimal and chilling temperatures: review.–Plant Physiol. Bioch. 40: 659–668, 2002.

    Article  CAS  Google Scholar 

  • Gandin A., Duffes C., Day D.A. et al.: The absence of alternative oxidase AOX1a results in altered response of photosynthetic carbon assimilation to increasing CO2 in Arabidopsis thaliana.–Plant Cell Physiol. 53: 1627–1637, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Golding A.J., Johnson G.N.: Down-regulation of linear and activation of cyclic electron transport during drought.–Planta 218: 107–114, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Govindjee, Wasielewski M.R.: Photosystem II: from a femtosecond to a millisecond.–In: Briggs W.R. (ed.): Photosynthesis. Pp. 71–103. Alan R. Liss, New York 1989.

    Google Scholar 

  • Hu W.H., Xiao Y.A., Zeng J.J. et al.: Photosynthesis, respiration and antioxidant enzymes in pepper leaves under drought and heat stresses.–Biol. Plantarum 54: 761–765, 2010.

    Article  CAS  Google Scholar 

  • Hu W.H., Yan X.H. Yu J.Q.: Importance of the mitochondrial alternative oxidase (AOX) pathway in alleviating photoinhibition in cucumber leaves under chilling injury and subsequent recovery when leaves are subjected to high light intensity.–J. Hort. Sci. Biotech. 92: 31–38, 2017.

    Article  CAS  Google Scholar 

  • Ivanov A.G., Hurry V., Sane P.V. et al.: Reaction centre quenching of excess light energy and photoprotection of photosystem II.–J. Plant Biol. 51: 85–96, 2008.

    Article  CAS  Google Scholar 

  • Jia H., Oguchi R., Hope A.B. et al.: Differential effects of severe water stress on linear and cyclic electron fluxes through photosystem I in spinach leaf discs in CO2-enriched air.–Planta 228: 803–812, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Lei Y., Zheng Y., Dai K. et al.: Different responses of photosystem I and photosystem II in three tropical oilseed crops exposed to chilling stress and subsequent recovery.–Trees 28: 923–933, 2014.

    Article  CAS  Google Scholar 

  • Mamedov M., Govindjee, Nadtochenko V. et al.: Primary electron transfer processes in photosynthetic reaction centers from oxygenic organisms.–Photosynth. Res. 125: 51–63, 2015.

    Article  PubMed  CAS  Google Scholar 

  • Maxwell K., Johnson G.N.: Chlorophyll fluorescence–a practical guide.–J. Exp. Bot. 51: 659–668, 2000.

    Article  PubMed  CAS  Google Scholar 

  • McKenzie S., McIntosh L.: Higher plant mitochondria.–Plant Cell 11: 571–585, 1999.

    Article  Google Scholar 

  • Mohanty P., Allakhverdiev S.I., Murata N.: Application of low temperatures during photoinhibition allow characterization of individual steps in photodamage and the repair of photosystem II.–Photosynth. Res. 94: 217–224, 2007

    Article  PubMed  CAS  Google Scholar 

  • Nunes-Nesi A., Sulpice R., Gibon Y. et al.: The enigmatic contribution of mitochondrial function in photosynthesis.–J. Exp. Bot. 59: 1675–1684, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Ort D.R., Baker N.R.: A photoprotective for O2 as an alternative electron sink in photosynthesis.–Curr. Opin. Plant Biol. 5: 193–198, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Padmasree K., Padmavathi L., Raghavendra A.S.: Essentiality of mitochondrial oxidative metabolism for photosynthesis: optimization of carbon assimilation and protection against photoinhibition.–Crit. Rev. Biochem. Mol. Biol. 37: 71–119, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Raghavendra A.S., Padmasree K.: Beneficial interactions of mitochondrial metabolism with photosynthetic carbon assimilation.–Trends Plant Sci. 8: 546–553, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Song X.S., Shang Z.W., Yin Z.P. et al.: Mechanism of xanthophyll-cycle-mediated photoprotection in Cerasus humilis seedlings under water stress and subsequent recovery.–Photosynthetica 49: 523–530, 2011.

    Article  CAS  Google Scholar 

  • Taylor N.L., Day D.A., Millar A.H.: Environmental stress causes oxidative damage to plant mitochondrial leading to inhibition to glycine decarboxylase.–J. Biol. Chem. 277: 42663–42668, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Tikkanen M., Mekala N.R., Aro E.M.: Photosystem II photoinhibition-repair cycle protects photosystem I from irreversible damage.–BBA-Bioenergetics 1837: 210–215, 2014.

    Article  PubMed  CAS  Google Scholar 

  • Wagner A.M., Krab K.: The alternative respiration pathway in plants: role and regulation.–Physiol. Plant. 95: 318–325, 1995.

    Article  CAS  Google Scholar 

  • Walker B.J., Strand D.D., Kramer D.M. et al.: The response of cyclic electron flow around photosystem I to changes in photorespiration and nitrate assimilation.–Plant Physiol. 165: 453–462, 2014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamori W., Sakata N., Suzuki Y. et al.: Cyclic electron flow around photosystem I via chloroplast NAD(P)H dehydrogenase (NDH) complex performs a significant physiological role during photosynthesis and plant growth at low temperature in rice.–Plant J. 68: 966–976, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Ye Z.P.: A new model for relationship between irradiance and the rate of photosynthesis in Oryza sativa.–Photosynthetica 45: 637–640, 2007.

    Article  CAS  Google Scholar 

  • Yin C.Y., Peng Y.H., Zang R.G. et al.: Adaptive responses of Populus kangdingensis to drought stress.–Physiol. Plantarum 123: 445–451, 2005.

    Article  CAS  Google Scholar 

  • Yoshida K., Terashima I., Noguchi K.: Distinct roles of the cytochrome pathway and alternative oxidase in leaf photosynthesis.–Plant Cell Physiol. 47: 22–31, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida K., Terashima I., Noguchi K.: Up-regulation of mitochondrial alternative oxidase concomitant with chloroplast over-reduction by excess light.–Plant Cell Physiol. 48: 606–614, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Yu J.Q., Matsui Y.: Effects of root exudates and allelochemical on ion uptake by cucumber seedlings.–J. Chem. Ecol. 23: 817–827, 1997.

    Article  CAS  Google Scholar 

  • Zandalinas S.I., Rivero R.M., Martínez V. et al.: Tolerance of citrus plants to the combination of high temperatures and drought is associated to the increase in transpiration modulated by a reduction in abscisic acid levels.–BMC Plant Biol. 16: 105, 2016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang L.T., Zhang Z.S., Gao H.Y. et al.: The mitochondrial alternative oxidase pathway protects the photosynthetic apparatus against photodamage in Rumex K-1 leaves.–BMC Plant Biol. 12: 40, 2012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang L.T., Zhang Z.S., Gao H.Y. et al.: Mitochondrial alternative oxidase pathway protects plants against photoinhibition by alleviating inhibition of the repair of photodamaged PSII through preventing formation of reactive oxygen species in Rumex K-1 leaves.–Physiol. Plantarum 143: 396–407, 2011.

    Article  CAS  Google Scholar 

  • Živcák M., Brestic M., Balatova Z. et al.: Photosynthetic electron transport and specific photoprotective response in wheat leaves under drought stress.–Photosynth. Res. 117: 529–546, 2013.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. H. Hu.

Additional information

Acknowledgements: This work was supported by National Natural Science Foundation of China (31460513).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, W.H., Yan, X.H., He, Y. et al. Role of alternative oxidase pathway in protection against drought-induced photoinhibition in pepper leaves. Photosynthetica 56, 1297–1303 (2018). https://doi.org/10.1007/s11099-018-0837-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-018-0837-1

Additional key words

Navigation