Skip to main content
Log in

Diurnal temperature-related variations in photosynthetic enzyme activities of two C4 species of Chenopodiaceae grown in natural environment

  • Original paper
  • Published:
Photosynthetica

Abstract

The effects of the diurnal variations in ambient temperature on some C3 and C4 enzymes in the Salsola dendroides and Suaeda altissima species of Chenopodiaceae family were studied during the intensive vegetation period. Activities of phosphoenolpyruvate carboxylase (PEPC) and cytosolic aspartate aminotransferase (AsAT) were shown to decrease in both species in the afternoon and evening. The activity of the mitochondrial AsAT decreased in S. altissima, remained relatively constant in S. dendroides during the day. The activity of alanine aminotransferase was high in the S. dendroides species in the morning and evening and decreased in the S. altissima species by the evening. Glucose-6-phosphate activated PEPC in both species throughout the day. The study of the redox status-regulated C3 enzymes showed temperature-related increases in NADP-glyceraldehyde 3-phosphate dehydrogenase activity in both plants, in fructose-2,6-bisphosphatase activity in the S. altissima species, and in NADP-MDH activity in the S. dendroides species in the afternoon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AlAT:

alanine aminotransferase

AsAT:

aspartate aminotransferase

BS:

bundle sheath

Chl:

chlorophyll

EDTA:

ethylenediaminetetraacetic acid

FBPase:

fructose-2,6-bisphosphatase

Fv/Fm :

maximum quantum efficiency of PSII

Glu-6-P:

glucose-6-phosphate

M:

mesophyll

MDH:

malate dehydrogenase

ME:

malic enzyme

2-ME:

2-β-mercaptoetanol

NADPGAPDH:

NADP-glyceraldehyde phosphate dehydrogenase

PEP(C):

phosphoenolpyruvate (carboxylase)

Tris:

tris(hydroxymethyl) aminomethane

References

  • Akhani H., Trimborn P., Ziegler H.: Photosynthetic pathways in Chenopodiaceae from Africa, Asia and Europe with their ecological, phytogeographical and taxonomical importance.‒Plant Syst. Evol. 206: 187–221, 1997.

    Article  Google Scholar 

  • Alfonso S.U., Brüggemann W.: Photosynthetic responses of a C3 and three C4 species of the genus Panicum (s.l.) with different metabolic subtypes to drought stress.‒Photosynth. Res. 112: 175–191, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Avasthi K., Izui K., Raghavendra A.S.: Interplay of light and temperature during the planta modulation of C4 phosphoenolpyruvate carboxylase from the leaves of Amaranthus hypochondriacus L.: diurnal and seasonal effects manifested at molecular levels.‒J. Exp. Bot. 62: 1017–1026, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Avasthi U.K., Raghavendra A.S.: Mutual stimulation of temperature and light effects on C4 phosphoenolpyruvate carboxylase in leaf discs and leaves of Amaranthus hypochondriacus.‒J. Plant Physiol. 165: 1023–1032, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Bailey K.J., Gray J.E., Walker R.P., Leegood R.C.: Coordinate regulation of phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase by light and CO2 during C4 photosynthesis.‒Plant Physiol. 144: 479–486, 2007.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bradford M.: Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.‒Anal. Biochem. 72: 248–254, 1976.

    Article  PubMed  CAS  Google Scholar 

  • Brestic M., Živčák M., Kunderliková K., Allakhverdiev S.I.: High temperature specifically affects the photoprotective responses of chlorophyll b-deficient wheat mutant lines.–Photosynth. Res. 130: 251–266, 2016.

    Article  PubMed  CAS  Google Scholar 

  • Chinthapalli B., Murmu J., Raghavendra A.S.: Dramatic difference in the responses of phosphoenolpyruvate carboxylase to temperature in leaves of C3 and C4 plants.‒J. Exp. Bot. 54: 707–714, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Chinthapalli B., Chitra D.S.V., Radhavendra A.S.: Temperature modulation of the activity and malate inhibition of the phosphoenolpyruvate carboxylase from leaves of Alternanthera pengens, compared to that of Lycoperisicon esculentum.‒Am. J. Biosci. 2: 238–243, 2014.

    Article  CAS  Google Scholar 

  • Chollet R., Vidal J., O’Leary M.H.: Phosphoenolpyruvate carboxylase: a ubiquitous, highly regulated enzyme in plants.‒Annu. Rev. Plant Phys. 47: 273–298, 1996.

    Article  CAS  Google Scholar 

  • Du Y.-Ch., Nose A., Kondo A., Wasano K.: Diurnal changes in photosynthesis in sugarcane leaves. I. Carbon dioxide exchange rate, photosynthesis enzyme activities and metabolite levels relating to the C4 pathway and the Calvin cycle.‒Plant Prod. Sci. 3: 3–8, 2000.

    Article  Google Scholar 

  • Dwyer S.A., Ghannoum O., Nicotra A., von Caemmerer S.: High temperature acclimation of C4 photosynthesis in linked to changes in photosynthetic biochemistry.–Plant Cell Environ. 30: 53–66, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Edwards G.E., Franceschi V.R., Voznesenkaya E.V.: Single cell C4 photosynthesis versus the dual-cell (Kranz) paradigm.‒Annu. Rev. Plant Biol. 55: 173–196, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Giglioli-Guivarc’h N., Pierre J.-N., Brown S. et al.: The lightdependent transduction pathway controlling the regulatory phosphorylation of C4 phosphoenolpyruvate carboxylase in protoplasts from Digitaria sanguinalis.‒Plant Cell 8: 573–586, 1996.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gowik U., Westhoff P.: The path from C3 and C4 photosynthesis.‒Plant Physiol. 155: 56–63, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Hatch M.D.: C4 photosynthesis in a unique blend of modified biochemistry, anatomy and ultrastructure.‒BBA-Rev. Bioenergetics 895: 81–106, 1987.

    CAS  Google Scholar 

  • Hibberd J.M., Covshoff S.: The regulation of gene expression required for C4 photosynthesis.‒Annu. Rev. Plant Biol. 61: 181–207, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Holaday A.S., Martindale W., Alred R. et al.: Changes in activities of enzymes of carbon metabolism in leaves during exposure of plants to low temperature.‒Plant Physiol. 98: 1105–1114, 1992.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leegood R.C.: C4 photosynthesis: principles of CO2 concentration and prospects for its introduction into C3 plants.–J. Exp. Bot. 53: 581–590, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Long S.P.: Environmental responses.‒In: Sage R.F., Monson R.K. (ed.): C4 Plant Biology. Pp. 215–249. Academic Press, San Diego 1999.

    Chapter  Google Scholar 

  • Movsumova F.G., Babayev H.G., Zeynalova M.H., Feyziyev Y.M.: [Taxonomic composition of Chenopodiaceae Vent. family in Absheron flora and its ecological analysis.]‒Proc. Azerbaijan Natl. Acad. Sci. (Biol. Med. Sci.) 69: 27–35, 2014. [In Russian]

    Google Scholar 

  • O’Leary B., Park J., Plaxton W.C.: The remarkable diversity ofplant PEPC (phosphoenolpyruvate carboxylase): recent insights into the physiological functions and post-translational controls of non-photosynthetic PEPCs.‒Biochem. J. 436: 15–34, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Pyankov V., Ziegler H., Kuz’min A., Edwards G.E.: Origin and evolution of C4 photosynthesis in the tribe Salsoleae (Chenopodiaceae) based on anatomical and biochemical types in leaves and cotyledons.‒Plant Syst. Evol. 230: 43–74, 2001.

    Article  CAS  Google Scholar 

  • Pyankov V.I., Voznesenskaya E.V., Kuz’min A.N. et al.: Occurrence of C3 and C4 photosynthesis in cotyledons and leaves of Salsola species (Chenopodiaceae).‒Photosynth. Res. 63: 69–84, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Rosnow J.J., Edwards G.E., Roalson E.H.: Positive selection of Kranz and non-Kranz C4 phosphoenolpyruvate carboxylase amino acids in Suaedoideae (Chenopodiaceae).–J. Exp. Bot. 65: 3595–3607, 2014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sage R.F., Christin P.A., Edwards E.J.: The C4 plant lineages of planet Earth.‒J. Exp. Bot. 62: 3155–3169, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Sage R.F., Kocacinar F., Kubien D.S.: C4 photosynthesis and temperature.‒In: Raghavendra A.S., Sage R.F. (ed.): C4 Photosynthesis and Related CO2 Concentrating Mechanisms. Pp. 161–195. Springer Sci+Business Media BV, Dordrecht 2011.

    Google Scholar 

  • Schüssler Ch., Freitag H., Koteyeva N. et al.: Molecular phylogeny and forms of photosynthesis in tribe Salsoleae (Chenopodiaceae).‒J. Exp. Bot. 68: 207–223, 2017.

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi M., Kobe M., Kato M., Sugiyama T.: Aspartate aminotransferase isozymes in Panicum miliaceum L., an NAD-Malic enzyme-type C4 plant: Comparison of enzymatic-properties, primary structures, and expression patterns.‒Arch. Biochem. Biophys. 318: 295–306, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi M., Sugiyama T.: Aspartate aminotransferase from Eleusine coracana, a C4 plant: Purification, characterization, and preparation of antibody.‒Arch. Biochem. Biophys. 282: 427–432, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Yamori W., Hikosaka K., Way D.A.: Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation.‒Photosynth. Res. 119: 101–117, 2014.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. M. Feyziyev.

Additional information

Acknowledgements: This work was supported by the Science Development Foundation under the President of the Republic of Azerbaijan–Grant No. EIF-2012-2(6)-39/19/3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orujova, T.Y., Bayramov, S.M., Gurbanova, U.A. et al. Diurnal temperature-related variations in photosynthetic enzyme activities of two C4 species of Chenopodiaceae grown in natural environment. Photosynthetica 56, 1107–1112 (2018). https://doi.org/10.1007/s11099-018-0804-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-018-0804-x

Additional key words

Navigation