Skip to main content
Log in

Inhibition of root respiration induces leaf senescence in Alhagi sparsifolia

  • Original papers
  • Published:
Photosynthetica

Abstract

Leaf senescence can be induced by numerous factors. In order to explore the relationship between root respiration and leaf senescence, we utilized different types of phloem girdling to control the root respiration of Alhagi sparsifolia and its physiological response. Our results showed that both girdling and inhibition of root respiration led to a decline of stomatal conductance, photosynthesis, transpiration rate, chlorophyll (Chl) a, Chl b, carotenoid (Car) content, Chl a/b, Chl/Car, water potential, and Chl a fluorescence, as well as to an increase of abscisic acid (ABA), proline, and malondialdehyde content in leaves and to upregulation of senescence-associated gene expression. Our present work implied that both inhibition of root respiration and girdling can induce leaf senescence. In comparison with phloem girdling, the leaf senescence caused by inhibition of root respiration was less significant. The reason for girdling-induced senescence was ABA and carbohydrate accumulation. Senescence induced by inhibition of root respiration occurred due to leaf water stress resulting from inhibition of water absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABA:

abscisic acid

ABS/RC:

absorption flux (of antenna Chls) per RC (also a measure of PSII apparent antenna size)

Car:

carotenoids

Chl:

chlorophyll

CS:

cross section of the sample

DIo/RC:

dissipation flux per RC

DM:

dry mass

E :

transpiration rate

ETo/RC:

electron transport flux (further than \({Q_{{A^ - }}}\)) per RC

Fv/Fm :

maximum photochemical efficiency of PSII

FM:

fresh mass

G1:

girdling with one branch left

G2:

girdling with two branches left

g s :

stomatal conductance

JA:

jasmonic acid

MDA:

malondialdehyde

Mo :

approximated initial slope of the fluorescence transient

N1:

nongirdling with one branch left

N2:

nongirdling with two branches left

OEC:

oxygen-evolving complex

PIabs :

performance index on absorption basis

P N :

net photosynthetic rate

PQ:

plastoquinone

Pro:

proline

RC:

reaction center

RC/CS:

density of RCs (\({Q_{{A^ - }}}\)reducing PSII reaction centers)

SA:

salicylic acid

SAGs:

senescence-associated genes

Sm :

normalised total complementary area above the OJIP transient (reflecting single-turnover QA reduction events)

TBA:

thiobarbituric acid

TRo/RC:

trapped energy flux (leading to QA reduction) per RC

ψo :

probability that a trapped exciton moves an electron into the electron transport chain beyond \({Q_{{A^ - }}}\) (at t = 0)

φEo :

quantum yield for electron transport (at t = 0)

φPo :

maximum quantum yield for primary photochemistry

Ψleaf :

leaf water potential

ΨM :

midday water potential

ΨP :

predawn water potential

References

  • Adams W.W., Winter K., Schreiber U. et al.: Photosynthesis and chlorophyll fluorescence characteristics in relationship to changes in pigment and element composition of leaves of Platanus occidentalis L. during autumnal leaf senescence. — Plant Physiol. 92: 1184–1190, 1990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agüera E., Molina E., de la Mata L. et al.: Metabolic Regulation of Leaf Senescence in Sunflower (Helianthus annuus L.) Plants.–In: Nagata T. (ed.): Senescence. Pp. 51–68. InTech, Rijeka 2012.

    Google Scholar 

  • Appenroth K-J., Stöckel J., Srivastava A. et al.: Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements. — Environ. Pollut. 115: 49–64, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Besseau S., Li J., Palva E.T.: WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana. — J. Exp. Bot. 63: 2667–2679, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhupinderpal-Singh, Nordgren A., Ottosson Löfvenius M., Högberg M. et al.: Tree root and soil heterotrophic respiration as revealed by girdling of boreal Scots pine forest: extending observations beyond the first year. — Plant Cell Environ. 26: 1287–1296, 2003.

    Article  CAS  Google Scholar 

  • Bloemen J., Agneessens L., van Meulebroek L. et al.: Stem girdling affects the quantity of CO2 transported in xylem as well as CO2 efflux from soil. — New Phytol. 201: 897–907, 2014.

    Article  CAS  PubMed  Google Scholar 

  • Bouranis D.L., Dionias A., Chorianopoulou S.N. et al.: Distribution profiles and interrelations of stomatal conductance, transpiration rate and water dynamics in young maize laminas under nitrogen deprivation. — Am. J. Plant Sci. 5: 659–670, 2014.

    Article  Google Scholar 

  • Brouquisse R., Masclaux C., Feller U. et al.: Protein hydrolysis and nitrogen remobilisation in plant life and senescence.–In: Lea P.J., Morot-Gaudry J.-F. (ed.): Plant Nitrogen. Pp. 275–293. Springer-Verlag, Berlin 2001.

    Chapter  Google Scholar 

  • Buchanan-Wollaston V., Page T., Harrison E. et al.: Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation–induced senescence in Arabidopsis. — Plant J. 42: 567–585, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Chen Y., Hou M., Liu L. et al.: The Maize DWARF1 encodes a gibberellin 3-oxidase and is dual localized to the nucleus and cytosol. — Plant Physiol. 166: 2028–2039, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dai J., Dong H.: Stem girdling influences concentrations of endogenous cytokinins and abscisic acid in relation to leaf senescence in cotton. — Acta Physiol. Plant. 33: 1697–1705, 2011.

    Article  CAS  Google Scholar 

  • Demiral T., Türkan I.: Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. — Environ. Exp. Bot. 53: 247–257, 2005.

    Article  CAS  Google Scholar 

  • Dong H., Niu Y., Li W. et al.: Effects of cotton rootstock on endogenous cytokinins and abscisic acid in xylem sap and leaves in relation to leaf senescence. — J. Exp. Bot. 59: 1295–1304, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Frey B., Hagedorn F., Giudici F.: Effect of girdling on soil respiration and root composition in a sweet chestnut forest. — Forest Ecol. Manage. 225: 271–277, 2006.

    Article  Google Scholar 

  • Fu W., Li P., Wu Y. et al.: Effects of different light intensities on anti-oxidative enzyme activity, quality and biomass in lettuce. — Hort. Sci. 39: 129–134, 2012.

    CAS  Google Scholar 

  • Fukao T., Yeung E., Bailey-Serres J. et al.: The submergence tolerance gene SUB1A delays leaf senescence under prolonged darkness through hormonal regulation in rice. — Plant Physiol. 160: 1795–1807, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fumuro M. et al.: Effects of trunk girdling during early shoot elongation period on tree growth, mineral absorption, water stress, and root respiration in Japanese persimmon (Diospyros kaki L.) cv. Nishimurawase. — J. Jpn. Soc. Hortic. Sci. 67: 219–227, 1998.

    Article  CAS  Google Scholar 

  • Goldschmidt E.E., Huber S.C.: Regulation of photosynthesis by end-product accumulation in leaves of plants storing starch, sucrose, and hexose sugars. — Plant Physiol. 99: 1443–1448, 1992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregersen P.L., Culetic A., Boschian L. et al.: Plant senescence and crop productivity. — Plant Mol. Biol. 82: 603–622, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Högberg P., Bhupinderpal-Singh, Löfvenius M.O., Nordgren A.: Partitioning of soil respiration into its autotrophic and heterotrophic components by means of tree-girdling in old boreal spruce forest. — Forest Ecol. Manage. 257: 1764–1767, 2009.

    Article  Google Scholar 

  • Högberg P., Nordgren A., Buchmann N. et al.: Large-scale forest girdling shows that current photosynthesis drives soil respiration. — Nature 411: 789–792, 2001.

    Article  PubMed  Google Scholar 

  • Hopkins M., Taylor C., Liu Z. et al.: Regulation and execution of molecular disassembly and catabolism during senescence. — New Phytol. 175: 201–214, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y., Liang G., Yang S. et al.: Arabidopsis WRKY57 functions as a node of convergence for jasmonic acid- and auxin-mediated signaling in jasmonic acid-induced leaf senescence. — Plant Cell 26: 230–245, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnsen K., Maier C., Sanchez F. et al.: Physiological girdling of pine trees via phloem chilling: proof of concept. — Plant Cell Environ. 30: 128–134, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Koeslin-Findeklee F., Meyer A., Girke A. et al.: The superior nitrogen efficiency of winter oilseed rape (Brassica napus L.) hybrids is not related to delayed nitrogen starvation-induced leaf senescence. — Plant Soil 384: 347–362, 2014.

    Article  CAS  Google Scholar 

  • Kong L., Si J., Sun M. et al.: Deep roots are pivotal for regulating post-anthesis leaf senescence in wheat (Triticum aestivum L.). — J. Agron. Crop Sci. 199: 209–216, 2013.

    Article  CAS  Google Scholar 

  • Kotakis C., Kyzeridou A., Manetas Y. et al.: Photosynthetic electron flow during leaf senescence: Evidence for a preferential maintenance of photosystem I activity and increased cyclic electron flow. — Photosynthetica 52: 413–420, 2014.

    Article  CAS  Google Scholar 

  • Krause G., Weis E.: Chlorophyll fluorescence and photosynthesis: the basics. — Annu. Rev. Plant Biol. 42: 313–349, 1991.

    Article  CAS  Google Scholar 

  • Kumar M., Singh V.P., Arora A. et al.: The role of abscisic acid (ABA) in ethylene insensitive Gladiolus (Gladiolus grandiflora Hort.) flower senescence. — Acta Physiol. Plant. 36: 151–159, 2014.

    Article  CAS  Google Scholar 

  • Li C.Y., Weiss D., Goldschmidt E.E.: Girdling affects carbohydrate-related gene expression in leaves, bark and roots of alternate-bearing citrus trees. — Ann. Bot.-London 92: 137–143, 2003.

    Article  CAS  Google Scholar 

  • Li N., Zhang S., Zhao Y. et al.: Over-expression of AGPase genes enhances seed weight and starch content in transgenic maize. — Planta 233: 241–250, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler H.K.: Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. — Methods Enzymol. 148: 350–382, 1987.

    Article  CAS  Google Scholar 

  • Lim P.O., Kim H.J., Nam H.G.: Leaf senescence. — Annu. Rev. Plant Biol. 58: 115–136, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Liu B., Zeng F.J., Arndt S.K. et al.: Patterns of root architecture adaptation of a phreatophytic perennial desert plant in a hyperarid desert. — S. Afr. J. Bot. 86: 56–62, 2013.

    Article  Google Scholar 

  • Lobell D.B., Sibley A., Ortiz-Monasterio J.I.: Extreme heat effects on wheat senescence in India. — Nature Climate Change 2: 186–189, 2012.

    Article  Google Scholar 

  • Lu Q., Lu C., Zhang J. et al.: Photosynthesis and chlorophyll a fluorescence during flag leaf senescence of field-grown wheat plants. — J. Plant Physiol. 159: 1173–1178, 2002.

    Article  CAS  Google Scholar 

  • Merzlyak M.N., Solovchenko A.E.: Photostability of pigments in ripening apple fruit: a possible photoprotective role of carotenoids during plant senescence. — Plant Sci. 163: 881–888, 2002.

    Article  CAS  Google Scholar 

  • Mikkelsen T.N., Heide-Jørgensen H.S.: Acceleration of leaf senescence in Fagus sylvatica L. by low levels of tropospheric ozone demonstrated by leaf colour, chlorophyll fluorescence and chloroplast ultrastructure. — Trees 10: 145–156, 1996.

    Google Scholar 

  • Mittler R., Merquiol E., Hallak-Herr E. et al.: Living under a ‘dormant’canopy: a molecular acclimation mechanism of the desert plant Retama raetam. — The Plant Journal 25: 407–416, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Moore B., Zhou L., Rolland F. et al.: Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. — Science 300: 332–336, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Nebauer S.G., Renau-Morata B., Guardiola J.L. et al.: Photosynthesis down-regulation precedes carbohydrate accumulation under sink limitation in Citrus. — Tree Physiol. 31: 169–177, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Nikinmaa E., Hölttä T., Hari P. et al.: Assimilate transport in phloem sets conditions for leaf gas exchange. — Plant Cell Environ. 36: 655–669, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Noodén L.D., Guiamét J.J., John I.: Senescence mechanisms. — Physiol. Plantarum 101: 746–753, 1997.

    Article  Google Scholar 

  • Olsson P., Linder S., Giesler R. et al.: Fertilization of boreal forest reduces both autotrophic and heterotrophic soil respiration. — Glob. Change Biol. 11: 1745–1753, 2005.

    Article  Google Scholar 

  • Parrott D., Yang L., Shama L. et al.: Senescence is accelerated, and several proteases are induced by carbon “feast” conditions in barley (Hordeum vulgare L.) leaves. — Planta 222: 989–1000, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Parrott D.L., Martin J.M., Fischer A.M.: Analysis of barley (Hordeum vulgare) leaf senescence and protease gene expression: a family C1A cysteine protease is specifically induced under conditions characterized by high carbohydrate, but low to moderate nitrogen levels. — New Phytol. 187: 313–331, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Parrott D.L., McInnerney K., Feller U. et al.: Steam-girdling of barley (Hordeum vulgare) leaves leads to carbohydrate accumulation and accelerated leaf senescence, facilitating transcriptomic analysis of senescence-associated genes. — New Phytol. 176: 56–69, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Peuke A.D., Windt C., Van As H.: Effects of cold-girdling on flows in the transport phloem in Ricinus communis: is mass flow inhibited? — Plant Cell Environ 29: 15–25, 2006.

    Article  PubMed  Google Scholar 

  • Pourtau N., Jennings R., Pelzer E. et al.: Effect of sugar-induced senescence on gene expression and implications for the regulation of senescence in Arabidopsis. — Planta 224: 556–568, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Rahman M.M., Chongling Y., Rahman M.M. et al.: Effects of copper on growth, accumulation, antioxidant activity and malondialdehyde content in young seedlings of the mangrove species Kandelia candel (L.). — Plant Biosyst. 146: 47–57, 2012.

    Article  Google Scholar 

  • Rivas F., Erner Y., Alós E. et al.: Girdling increases carbohydrate availability and fruit-set in citrus cultivars irrespective of parthenocarpic ability. — J. Hortic. Sci. Biotech. 81: 289–295, 2006.

    Article  CAS  Google Scholar 

  • Rivas F., Fornes F., Rodrigo M. et al.: Changes in carotenoids and ABA content in Citrus leaves in response to girdling. — Sci. Hortic.-Amsterdam 127: 482–487, 2011.

    Article  CAS  Google Scholar 

  • Robert-Seilaniantz A., Grant M., Jones J.D.: Hormone crosstalk in plant disease and defense: more than just jasmonatesalicylate antagonism. — Annu. Rev. Phytopathol. 49: 317–343, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Roberts I.N., Caputo C., Criado M.V. et al.: Senescenceassociated proteases in plants. — Physiol. Plantarum. 145: 130–139, 2012.

    Article  CAS  Google Scholar 

  • Roper T.R., Williams L.E.: Net CO2 assimilation and carbohydrate partitioning of grapevine leaves in response to trunk girdling and gibberellic acid application. — Plant Physiol. 89: 1136–1140, 1989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakuraba Y., Schelbert S., Park S.Y. et al.: STAY-GREEN and chlorophyll catabolic enzymes interact at light-harvesting complex II for chlorophyll detoxification during leaf senescence in Arabidopsis. — Plant Cell 24: 507–518, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Setter T.L., Brun W.A., Brenner M.L.: Effect of obstructed translocation on leaf abscisic acid, and associated stomatal closure and photosynthesis decline. — Plant Physiol. 65: 1111–1115, 1980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sitton D., Itai C., Kende H.: Decreased cytokinin production in the roots as a factor in shoot senescence. — Planta 73: 296–300, 1967.

    Article  CAS  PubMed  Google Scholar 

  • Song J., Deng W., Beaudry R.M. et al.: Changes in chlorophyll fluorescence of apple fruit during maturation, ripening, and senescence. — HortSci. 32: 891–896, 1997.

    CAS  Google Scholar 

  • Speirs J., Binney A., Collins M. et al.: Expression of ABA synthesis and metabolism genes under different irrigation strategies and atmospheric VPDs is associated with stomatal conductance in grapevine (Vitis vinifera L. cv Cabernet Sauvignon). — J. Exp. Bot. 64: 1907–1916, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sperotto R.A., Boff T., Duarte G.L. et al.: Increased senescenceassociated gene expression and lipid peroxidation induced by iron deficiency in rice roots. — Plant Cell Rep. 27: 183–195, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Srivastava A., Guissé B., Greppin H.: et al.: Regulation of antenna structure and electron transport in photosystem II of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient: OKJIP. — BBA-Bioenergetics 1320: 95–106, 1997.

    Article  CAS  Google Scholar 

  • Strasser B.J.: Donor side capacity of photosystem II probed by chlorophyll a fluorescence transients. — Photosynth. Res. 52: 147–155, 1997.

    Article  CAS  Google Scholar 

  • Strasser R.J., Srivastava A., Tsimilli-Michael M.: The fluorescence transient as a tool to characterize and screen photosynthetic samples.–In: Yunus M. (ed.): Probing Photosynthesis: Mechanisms, Regulation and Adaptation. Pp. 445–483. Taylor & Francis, London, 2000.

    Google Scholar 

  • Strasser R.J., Tsimilli-Michael M., Srivastava A.: Analysis of the chlorophyll a fluorescence transient. — In: Papageorgiou G., Govindjee (ed.): Advances in Photosynthesis and Respiration. Chlorophyll Fluorescence a Signature of Photosynthesis. Pp. 321–362. Kluwer, Dordrecht 2004.

    Google Scholar 

  • Subke J.A., Hahn V., Battipaglia G. et al.: Feedback interactions between needle litter decomposition and rhizosphere activity. — Oecologia 139: 551–559, 2004.

    Article  PubMed  Google Scholar 

  • Tang G.L., Li X.Y., Lin L.S. et al.: Combined effects of girdling and leaf removal on fluorescence characteristic of Alhagi Sparsifolia leaf senescence. — Plant Biol. 17: 980–989, 2015a.

    Article  CAS  PubMed  Google Scholar 

  • Tang G.L., Li X.Y., Lin L.S. et al.: Girdling-induced Alhagi sparsifolia senescence and chlorophyll fluorescence changes. — Photosynthetica 53: 585–596, 2015b.

    Article  CAS  Google Scholar 

  • Tang G.L., Li X.Y., Lin L.S. et al.: Impact of girdling and leaf removal on Alhagi sparsifolia leaf senescence. — Plant Growth Regul. 78: 205–216, 2016.

    Article  CAS  Google Scholar 

  • Tschaplinski T.J., Blake T.J.: Effects of root restriction on growth correlations, water relations and senescence of alder seedlings. — Physiol. Plantarum 64: 167–176, 1985.

    Article  Google Scholar 

  • Urban L., Alphonsout L.: Girdling decreases photosynthetic electron fluxes and induces sustained photoprotection in mango leaves. — Tree Physiol. 27: 345–352, 2007.

    Article  CAS  PubMed  Google Scholar 

  • van Heerden P.D., Strasser R.J., Krüger G.H.: Reduction of dark chilling stress in N2-fixing soybean by nitrate as indicated by chlorophyll a fluorescence kinetics. — Physiol. Plantarum 121: 239–249, 2004.

    Article  Google Scholar 

  • Veselov D.S., Sharipova G.V., Veselov S.U. et al.: The effects of NaCl treatment on water relations, growth, and ABA content in barley cultivars differing in drought tolerance. — J. Plant Growth Regul. 27: 380–386, 2008.

    Article  CAS  Google Scholar 

  • Vogelmann K., Drechsel G., Bergler J. et al.: Early senescence and cell death in Arabidopsis saul1 mutants involves the PAD4-dependent salicylic acid pathway. — Plant Physiol. 159: 1477–1487, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vysotskaya L., Kudoyarova G., Veselov S. et al.: Unusual stomatal behaviour on partial root excision in wheat seedlings. — Plant Cell Environ. 27: 69–77, 2004.

    Article  CAS  Google Scholar 

  • Wang S., Hu L., Sun J. et al.: Effects of exogenous abscisic acid on leaf carbohydrate metabolism during cucumber seedling dehydration. — Plant Growth Regul. 66: 87–93, 2012.

    Article  CAS  Google Scholar 

  • Williams L.E., Araujo F.J.: Correlations among predawn leaf, midday leaf, and midday stem water potential and their correlations with other measures of soil and plant water status in Vitis vinifera. — J. Am. Soc. Hortic. Sci. 127: 448–454, 2002.

    Google Scholar 

  • Williams L.E., Baeza P., Vaughn P. et al.: Midday measurements of leaf water potential and stomatal conductance are highly correlated with daily water use of Thompson Seedless grapevines. — Irrigation Sci. 30: 201–212, 2012.

    Article  Google Scholar 

  • Williams L.E., Retzlaff W.A., Yang W. et al.: Effect of girdling on leaf gas exchange, water status, and non-structural carbohydrates of field-grown Vitis vinifera L.(cv. Flame Seedless). — Am. J. Enol. Viticult. 51: 49–54, 2000.

    CAS  Google Scholar 

  • Yang J., Zhang J., Wang Z. et al.: Abscisic acid and cytokinins in the root exudates and leaves and their relationship to senescence and remobilization of carbon reserves in rice subjected to water stress during grain filling. — Planta 215: 645–652, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Yang J., Zhang J., Wang Z. et al.: Involvement of abscisic acid and cytokinins in the senescence and remobilization of carbon reserves in wheat subjected to water stress during grain filling. — Plant Cell Environ. 26: 1621–1631, 2003.

    Article  CAS  Google Scholar 

  • Yang X.Y., Wang F.F., Teixeira da Silva J.A. et al. Branch girdling at fruit green mature stage affects fruit ascorbic acid contents and expression of genes involved in l-galactose pathway in citrus. — N. Zeal. J. Crop Hort. 41: 23–31, 2013.

    Article  Google Scholar 

  • Yordanov I., Goltsev V., Stefanov D. et al.: Preservation of photosynthetic electron transport from senescence-induced inactivation in primary leaves after decapitation and defoliation of bean plants. — J. Plant Physiol. 165: 1954–1963, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Zwack P.J., Robinson B.R., Risley M.G. et al.: Cytokinin response factor 6 negatively regulates leaf senescence and is induced in response to cytokinin and numerous abiotic stresses. — Plant Cell Physiol. 54: 971–981, 2013.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X.-Y. Li.

Additional information

Acknowledgments: We thank the anonymous reviewers for valuable comments. We also express gratitude to Zhuyu Gu for assistance with experiment, and Jake Carpenter for polishing the English in this manuscript. This research was supported by National Natural Sciences Foundation of China (41571057), Key Program of Joint Funds of the National Natural Sciences Foundation and the Government of Xinjiang Uygur Autonomous Region of China (U1203201), and the National Natural Sciences Foundation of China (41371516).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, GL., Li, XY., Lin, LS. et al. Inhibition of root respiration induces leaf senescence in Alhagi sparsifolia . Photosynthetica 55, 588–602 (2017). https://doi.org/10.1007/s11099-016-0674-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-016-0674-z

Additional key words

Navigation