Skip to main content
Log in

Girdling-induced Alhagi sparsifolia senescence and chlorophyll fluorescence changes

  • Original Papers
  • Published:
Photosynthetica

Abstract

Senescence constitutes the final stage of a plant organ and tissue development and is a subject to gene control and strict regulation. By the late growing season, when Alhagi sparsifolia entered the natural senescence period, a girdling treatment was carried out on the phloem to increase the sugar content in leaves and to investigate carbohydrate-induced leaf senescence. After the semi-girdling and full-girdling treatment, organic matter could not leave leaves due to the destruction of sieve tubes. This led to constantly increasing sugar contents in leaves. Girdling was shown to greatly accelerate the senescence of plants. In girdled leaves, chlorophyll (Chl) a, Chl b, carotenoids (Car), and both ratios of Chl a/b and Chl/Car were significantly reduced. On the donor side of PSII, the oxygen-evolving complex was inhibited under high concentrations of carbohydrates, which was manifested as the emergence of the K phase in fluorescence kinetic curves. On the acceptor side of PSII, the high carbohydrate content also led to the disruption of electron transport and reduced light-use efficiency, which was manifested as a reduction in numerous fluorescence parameters. We believe that the emergence and development of plant senescence was not necessarily induced by the high content of carbohydrates, because even a decrease in the carbohydrate concentration could not stop the senescence process. Although the high content of carbohydrates in plants could induce plant senescence, this kind of senescence was likely a pathological process, including degradations of physiological functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Car:

carotenoids

Chl:

chlorophyll

CK:

control

DM:

dry mass

FG:

full-girdling

FM:

fresh mass

Fv/Fm :

maximal quantum yield of PSII photochemistry

MDA:

malondialdehyde

M0 :

approximated initial slope of the fluorescence transient

OEC:

oxygen-evolving complex

PIabs :

performance index on absorption basis

P N :

net photosynthetic rate

Pro:

proline

PQ:

plastoquinone

QA :

primary quinone acceptor of PSII

QB :

secondary quinone acceptor of PSII

SE:

standard error

SG:

semigirdling

Sm :

normalized total complementary area above the O-J-I-P transient

Ψ0 :

probability that a trapped exciton moves an electron into the electron transport chain beyond QA (at t = 0)

φE0 :

quantum yield for electron transport (at t = 0)

References

  • Appenroth K.J., Stöckel J., Srivastava A., Strasser.R.J.: Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements. — Environ. Pollut. 115: 49–64, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Argyroudi-Akoyunoglou J., Akoyunoglou G.: Photoinduced changes in the chlorophyll a to chlorophyll b ratio in young bean plants. — Plant Physiol. 46: 247–249, 1970.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Biswal B.: Carotenoid catabolism during leaf senescence and its control by light. — J. Photochem. Photobiol. B 30: 3–13, 1995.

    Article  CAS  Google Scholar 

  • Björkman O., Demmig B.: Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. — Planta 170: 489–504, 1987.

    Article  PubMed  Google Scholar 

  • Bleecker A.B., Patterson S.E.: Last exit: senescence, abscission, and meristem arrest in Arabidopsis. — Plant Cell 9: 1169–1179, 1997.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Buchanan-Wollaston V., Earl S., Harrison E. et al.: The molecular analysis of leaf senescence — a genomics approach. — Plant Biotechnol. J. 1: 3–22, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Buchanan-Wollaston V.: The molecular biology of leaf senescence. — J. Exp. Bot. 48: 181–199, 1997.

    Article  Google Scholar 

  • Burton G.W., Ingold K.U.: Beta-carotene: an unusual type of lipid antioxidant. — Science 224: 569–573, 1984.

    Article  CAS  PubMed  Google Scholar 

  • Dai J., Dong H.: Stem girdling influences concentrations of endogenous cytokinins and abscisic acid in relation to leaf senescence in cotton. — Acta Physiol. Plant. 33: 1697–1705, 2011.

    Article  CAS  Google Scholar 

  • Dai N., Schaffer A., Petreikov M. et al.: Overexpression of Arabidopsis hexokinase in tomato plants inhibits growth, reduces photosynthesis, and induces rapid senescence. — Plant Cell 11: 1253–1266, 1999.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Demiral T., Türkan I.: Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. — Environ. Exp. Bot. 53: 247–257, 2005.

    Article  CAS  Google Scholar 

  • Dong H., Niu Y., Li W. et al.: Effects of cotton rootstock on endogenous cytokinins and abscisic acid in xylem sap and leaves in relation to leaf senescence. — J. Exp. Bot. 59: 1295–1304, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Feller U., Fischer A.: Nitrogen metabolism in senescing leaves. — Crit. Rev. Plant Sci. 13: 241–273, 1994.

    Article  CAS  Google Scholar 

  • Gan S., Amasino R.M.: Making sense of senescence (molecular genetic regulation and manipulation of leaf senescence). — Plant Physiol. 113: 313–319, 1997.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gregersen P., Holm P., Krupinska K.: Leaf senescence and nutrient remobilisation in barley and wheat. — Plant Biol. 10: 37–49, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Guissé B., Srivastava A., Strasser R.: The polyphasic rise of the chlorophyll a fluorescence (OKJIP) in heat stressed leaves. — Arch. Sci. 48: 147–160, 1995.

    Google Scholar 

  • Harrell D.C., Williams L.E.: Net CO2 assimilation rate of grapevine leaves in response to trunk girdling and gibberellic acid application. — Plant Physiol. 83: 457–459, 1987.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hendry G.: Where does all the green go? — New Scientist 1637: 38–42, 1988.

    Google Scholar 

  • Himelblau E., Amasino R.M.: Nutrients mobilized from leaves of Arabidopsis thaliana during leaf senescence. — J. Plant Physiol. 158: 1317–1323, 2001.

    Article  CAS  Google Scholar 

  • Hörtensteiner S.: Chlorophyll degradation during senescence. — Annu. Rev. Plant Biol. 57: 55–77, 2006.

    Article  PubMed  Google Scholar 

  • Humbeck K., Quast S., Krupinska K.: Functional and molecular changes in the photosynthetic apparatus during senescence of flag leaves from field-grown barley plants. — Plant Cell Environ. 19: 337–344, 1996.

    Article  CAS  Google Scholar 

  • Jaleel C.A., Manivannan P., Sankar B. et al.: Calcium chloride effects on salinity-induced oxidative stress, proline metabolism and indole alkaloid accumulation in Catharanthus roseus. — C. R. Biol. 330: 674–683, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Jongebloed U., Szederkényi J., Hartig K. et al.: Sequence of morphological and physiological events during natural ageing and senescence of a castor bean leaf: sieve tube occlusion and carbohydrate back-up precede chlorophyll degradation. — Physiol. Plantarum 120: 338–346, 2004.

    Article  CAS  Google Scholar 

  • Koch K.: Carbohydrate-modulated gene expression in plants. — Annu. Rev. Plant Biol. 47: 509–540, 1996.

    Article  CAS  Google Scholar 

  • Kosugi H., Kikugawa K.: Thiobarbituric acid reaction of aldehydes and oxidized lipids in glacial acetic acid. — Lipids 20: 915–921, 1985.

    Article  CAS  Google Scholar 

  • Krapp A., Stitt M.: An evaluation of direct and indirect mechanisms for the “sink-regulation” of photosynthesis in spinach: changes in gas exchange, carbohydrates, metabolites, enzyme activities and steady-state transcript levels after cold-girdling source leaves. — Planta 195: 313–323, 1995.

    Article  CAS  Google Scholar 

  • Li N., Zhang S., Zhao Y. et al.: Over-expression of AGPase genes enhances seed weight and starch content in transgenic maize. — Planta 233: 241–250, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler H.K., Babani F.: Light adaptation and senescence of the photosynthetic apparatus. Changes in pigment composition, chlorophyll fluorescence parameters and photosynthetic activity. — In: Papageorgiou, G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Pp. 713–736. Springer, Dordrecht 2004.

    Chapter  Google Scholar 

  • Lichtenthaler H.K.: Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. — Methods Enzymol. 148: 350–382, 1987.

    Article  CAS  Google Scholar 

  • Lim P.O., Kim H.J., Gil-Nam H.: Leaf senescence. — Annu. Rev. Plant Biol. 58: 115–136, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Lu P., Chacko E.: Evaluation of Granier’s sap flux sensor in young mango trees. — Agronomie 18: 461–471, 1998.

    Article  Google Scholar 

  • Lu Q., Lu C., Zhang J. et al.: Photosynthesis and chlorophyll a fluorescence during flag leaf senescence of field-grown wheat plants. — J. Plant Physiol. 159: 1173–1178, 2002.

    Article  CAS  Google Scholar 

  • Masclaux C., Valadier M.-H., Brugière N. et al.: Characterization of the sink/source transition in tobacco (Nicotiana tabacum L.) shoots in relation to nitrogen management and leaf senescence. — Planta 211: 510–518, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Matile P.: Fluorescent idioblasts in autumn leaves of Ginkgo biloba. — Bot. Helv. 104: 87–92, 1994.

    Google Scholar 

  • Matile P.: Chloroplast senescence. — Topics Photosynth. 12: 413–440, 1992.

    CAS  Google Scholar 

  • Mickelson S., See D., Meyer F.D. et al.: Mapping of QTL associated with nitrogen storage and remobilization in barley (Hordeum vulgare L.) leaves. — J. Exp. Bot. 54: 801–812, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Miller A., Schlagnhaufer C., Spalding M., Rodermel, S.: Carbohydrate regulation of leaf development: prolongation of leaf senescence in Rubisco antisense mutants of tobacco. — Photosynth. Res. 63: 1–8, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Mittler R., Merquiol E., Hallak-Herr E. et al.: Living under a ‘dormant’ canopy: a molecular acclimation mechanism of the desert plant Retama raetam. — Plant J. 25: 407–416, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Moore B., Zhou L., Rolland F. et al.: Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. — Science 300: 332–336, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Ono K., Nishi Y., Watanabe A., Terashima, I.: Possible mechanisms of adaptive leaf senescence. — Plant Biol. 3: 234–243, 2001.

    Article  CAS  Google Scholar 

  • Parrott D., Yang L., Shama L., Fischer, A.M.: Senescence is accelerated, and several proteases are induced by carbon “feast” conditions in barley (Hordeum vulgare L.) leaves. — Planta 222: 989–1000, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Parrott D.L., Martin J.M., Fischer A.M.: Analysis of barley (Hordeum vulgare) leaf senescence and protease gene expression: a family C1A cysteine protease is specifically induced under conditions characterized by high carbohydrate, but low to moderate nitrogen levels. — New Phytol. 187: 313–331, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Parrott D.L., McInnerney K., Feller U., Fischer, A.M.: Steamgirdling of barley (Hordeum vulgare) leaves leads to carbohydrate accumulation and accelerated leaf senescence, facilitating transcriptomic analysis of senescence-associated genes. — New Phytol. 176: 56–69, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Pourtau N., Jennings R., Pelzer E. et al.: Effect of sugar-induced senescence on gene expression and implications for the regulation of senescence in Arabidopsis. — Planta 224: 556–568, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Pourtau N., Marès M., Purdy S. et al.: Interactions of abscisic acid and sugar signalling in the regulation of leaf senescence. — Planta 219: 765–772, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Rahman M.M., Chongling Y., Rahman M.M., Islam, K.S.: Effects of copper on growth, accumulation, antioxidant activity and malondialdehyde content in young seedlings of the mangrove species Kandelia candel (L.). — Plant Biosyst. 146: 47–57, 2012.

    Article  Google Scholar 

  • Rajcan I., Dwyer L.M., Tollenaar M.: Note on relationship between leaf soluble carbohydrate and chlorophyll concentrations in maize during leaf senescence. — Field Crops Res. 63: 13–17, 1999.

    Article  Google Scholar 

  • Rivas F., Erner Y., Alós E. et al.: Girdling increases carbohydrate availability and fruit-set in citrus cultivars irrespective of parthenocarpic ability. — J. Hortic. Sci. Biotechnol. 81: 289–295, 2006.

    CAS  Google Scholar 

  • Rivas F., Fornes F., Rodrigo J.M. et al.: Changes in carotenoids and ABA content in Citrus leaves in response to girdling. — Sci. Hortic. 127: 482–487, 2011.

    Article  CAS  Google Scholar 

  • Roper T.R., Williams L.E.: Net CO2 assimilation and carbohydrate partitioning of grapevine leaves in response to trunk girdling and gibberellic acid application. — Plant Physiol. 89: 1136–1140, 1989.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schaper H., Chacko E.: Effect of irradiance, leaf age, chlorophyll content and branch-girdling on gas exchange of cashew (Anacardium accidentale L.) leaves. — J. Hortic. Sci. 68: 541–550, 1993.

    CAS  Google Scholar 

  • Smart C.M.: Gene expression during leaf senescence. — New Phytol. 126: 419–448, 1994.

    Article  CAS  Google Scholar 

  • Strasser B.J., Strasser R.J.: Measuring fast fluorescence transients to address environmental questions: the JIP test. — In: Mathis P. (ed.): Photosynthesis: From Light to Biosphere. Volume 5. Pp. 977–980. Kluwer Academic Publisher, Dordrecht 1995.

    Google Scholar 

  • Strasser R.J., Govindjee: On the O-J-I-P fluorescence transient in leaves and D1 mutants of Chlamydomonas reinhardtii. — In: Murata, N. (ed.): Research in Photosynthesis. 2nd Ed., Vol. 2. Pp. 529–532. Kluwer Academic Publishers, Dordrecht 1992.

    Google Scholar 

  • Strasser R.J., Srivastava A., Tsimilli-Michael M.: The fluorescence transient as a tool to characterize and screen photosynthetic samples. — In: Yunus M., Pathre U., Mohanty P. (eds.): Probing Photosynthesis: Mechanism, Regulation and Adaptation. Pp. 443–480. Taylor and Francis, London 2000.

    Google Scholar 

  • Strasser R.J., Tsimilli-Michael M., Srivastava A.: Analysis of the chlorophyll a fluorescence transient. — In: Papageorgiou, G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Pp. 321–362. Springer, Dordrecht 2004.

    Chapter  Google Scholar 

  • Thomas H., Smart C.M.: Crops that stay green. — Ann. Appl. Biol. 123: 193–219, 1993.

    Article  Google Scholar 

  • Urban L., Alphonsout L.: Girdling decreases photosynthetic electron fluxes and induces sustained photoprotection in mango leaves. — Tree Physiol. 27: 345–352, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Van Heerden P.D., Strasser R.J., Krüger G.H.: Reduction of dark chilling stress in N2-fixing soybean by nitrate as indicated by chlorophyll a fluorescence kinetics. — Physiol. Plantarum 121: 239–249, 2004.

    Article  Google Scholar 

  • Van Heerden P.D., Tsimilli-Michael M., Krüger G.H., Strasser, R.J.: Dark chilling effects on soybean genotypes during vegetative development: parallel studies of CO2 assimilation, chlorophyll a fluorescence kinetics O-J-I-P and nitrogen fixation. — Physiol. Plantarum 117: 476–491, 2003.

    Article  Google Scholar 

  • Van Rensburg L., Kruger G., Eggenberg P., Strasser, R.J.: Can screening criteria for drought resistance in Nicotiana tabacum L. be derived from the polyphasic rise of the chlorophyll a fluorescence transient (OJIP)? — S. Afr. J. Bot. 62: 337–341, 1996.

    Article  Google Scholar 

  • Willekens H., Van Camp W., Van Montagu M. et al.: Ozone, sulfur dioxide, and ultraviolet B have similar effects on mRNA accumulation of antioxidant genes in Nicotiana plumbaginifolia L. — Plant Physiol. 106: 1007–1014, 1994.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wingler A., Purdy S., MacLean J.A., Pourtau, N.: The role of sugars in integrating environmental signals during the regulation of leaf senescence. — J. Exp. Bot. 57: 391–399, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Wingler A., Von Schaewen A., Leegood R.C. et al.: Regulation of leaf senescence by cytokinin, sugars, and light effects on NADH-dependent hydroxypyruvate reductase. — Plant Physiol. 116: 329–335, 1998.

    Article  PubMed Central  CAS  Google Scholar 

  • Xue W., Li X., Lin L. et al.: Effects of elevated temperature on photosynthesis in desert plant Alhagi sparsifolia S. — Photosynthetica 49: 435–447, 2011.

    Article  CAS  Google Scholar 

  • Yang X.-Y., Wang F.-F., Teixeira da Silva J.A. et al.: Branch girdling at fruit green mature stage affects fruit ascorbic acid contents and expression of genes involved in L-galactose pathway in citrus. — New Zealand J. Crop Hortic. Sci. 41: 23–31, 2013.

    Article  Google Scholar 

  • Yoshida S.: Molecular regulation of leaf senescence. — Curr. Opin. Plant Biol. 6: 79–84, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Zeng J., Zeng F., Arndt S. et al.: Growth, physiological characteristics and ion distribution of NaCl stressed Alhagi sparsifolia seedlings. — Chin. Sci. Bull. 53: 169–176, 2008.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. -Y. Li.

Additional information

Acknowledgments: We thank the anonymous reviewers for their invaluable comments. We also express gratitude to Zhuyu Gu for assistance with experiment, and Jake Carpenter for polishing the English in this manuscript. This work was financially supported by the National Natural Sciences Foundation of China (41571057), Key Program of Joint Funds of the National Natural Sciences Foundation and the Government of Xinjiang Uygur Autonomous Region of China (U1203201), National Natural Sciences Foundation of China (41371516).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, G.L., Li, X.Y., Lin, L.S. et al. Girdling-induced Alhagi sparsifolia senescence and chlorophyll fluorescence changes. Photosynthetica 53, 585–596 (2015). https://doi.org/10.1007/s11099-015-0148-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-015-0148-8

Additional key words

Navigation