Skip to main content
Log in

Morphological recognition with the addition of multi-band fluorescence excitation of chlorophylls of phytoplankton

  • Original Paper
  • Published:
Photosynthetica

Abstract

The recognition of aquatic organisms plays a crucial role in the monitoring of the pollution and for the adoption of rapid preventive actions. A compact microscopic optical imaging system is proposed in order to acquire and treat the multibands fluorescence of several pigments in phytoplankton organisms. Two algorithms for automatic recognition of phytoplankton were proposed with a minimum number of calibration parameters. The first algorithm provides a morphological recognition based on “watershed” segmentation and Fourier descriptors, while the second one builds fluorescence pigment images by “k-means” partition of intensity ratios. The operation of these algorithms was illustrated by the study of two different organisms: a cyanobacteria (Dolichospermum sp.) and an alga (Cladophora sp.). The family and the genus of these organisms were then classified into a database which is independent of the size, the orientation and the position of the specimens in the images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CCD:

charge coupled device

Chl:

chlorophyll

References

  • Batoréu M.C.C., Dias E., Pereira P. et al.: Risk of human exposure to paralytic toxins of algal origin.–Environ. Toxicol. Phar. 19: 401–406, 2005.

    Article  Google Scholar 

  • Bro E., Meyer S., Genty B.: Heterogeneity of leaf CO2 assimilation during photosynthetic induction.–Plant Cell Environ. 19: 1349–1358, 1996.

    Article  CAS  Google Scholar 

  • Chaerle L., Leinonen I., Jones H.G. et al.: Monitoring and screening plant populations with combined thermal and chlorophyll fluorescence imaging.–J. Exp. Bot. 58: 773–784, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Chen M., Blankenship R.E.: Expanding the solar spectrum used by photosynthesis.–Trend. Plant Sci. 16: 427–431, 2011.

    Article  CAS  Google Scholar 

  • Chen X.: Skin lesion segmentation by an adaptive watershed flooding approach.–PhD Dissertation, Univ. Missouri-Rolla, 2007

    Google Scholar 

  • Codd G.A., Lindsay J., Young J.M. et al.: Harmful Cyanobacteria.–In: Huisman J., Matthijs H.C.P., Visser P.M. (ed.): Harmful Cyanobacteria. Pp. 1–23. Springer, Dordrecht 2005.

    Chapter  Google Scholar 

  • Falco W.F., Botero E.R., Falcão E.A. et al.: In vivo observation of chlorophyll fluorescence quenching induced by gold nanoparticles.–J. Photoch. Photobio. A 225: 65–71, 2011.

    Article  CAS  Google Scholar 

  • Falconer I. R., Humpage A. R.: Health risk assessment of Cyanobacterial (blue-green algal) toxins in drinking water.–Ini. J. Env. Res. Pub. He. 2: 43–50, 2005.

    Article  CAS  Google Scholar 

  • French C.S., Young V.K.: The fluorescence spectra of red algae and the transfer of energy from phycoerythrin to phycocyanin and chlorophyll.–J. Gen. Physiol. 35: 873–890, 1952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gons H. J., Hakvoort H., Peters S. W. M. et al.: Optical detection of Cyanobacterial blooms.–In: Huisman J., Matthijs H.C.P., Visser P.M. (ed.): Harmful Cyanobacteria. Pp. 177–200. Springer, Dordrecht 2005.

    Chapter  Google Scholar 

  • Govindjee Shevela D.: Adventures with Cyanobacteria: a personal perspective.–Front. Plant Sci. 2: 1–17, 2011.

    Google Scholar 

  • Guidi L., Degl’Innocenti E.: Imaging of chl a fluorescence: a tool to study abiotic stress in plants.–In: Shanker A., Venkateswarlu B. (ed.): Abiotic Stress in Plants–Mechanisms and Adaptations. Pp. 3–20. In Tech, 2011.

    Google Scholar 

  • Hall E. L.: Computer Image Processing and Recognition. Pp. 585. Academic Press, New York 1979.

    Google Scholar 

  • Hudnell H. K.: Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs: State of the Science and Research Needs. Pp. 2–15. Springer Sci. Business Media, New York 2008.

    Google Scholar 

  • Komárek J., Anagnostidis K.: [Freshwater Flora of Central Europe: Chroococcales.] Pp. 548. Gustav Fischer Verlag, Stuttgart 2000 [In German]

    Google Scholar 

  • Kühl M., Chen M., Ralph P.J. et al.: Ecology: a niche for Cyanobacteria containing chlorophyll d.–Nature 433: 820–820, 2005.

    Article  PubMed  Google Scholar 

  • Kutser T., Vahtmäe E., Martin G.: Assessing suitability of multispectral satellites for mapping benthic macroalgal cover in turbid coastal waters by means of model simulations.–Estuar. Coast. Shelf S. 67: 521–529, 2006.

    Article  Google Scholar 

  • Lichtenthaler H.K., Langsdorf G., Lenk S. et al.: Chlorophyll fluorescence imaging of photosynthetic activity with the flashlamp fluorescence imaging system.–Photosynthetica 43: 355–369, 2005.

    Article  CAS  Google Scholar 

  • Lichtenthaler H.K., Babani F., Langsdorf G.: Chlorophyll fluorescence imaging of photosynthetic activity in sun and shade leaves of trees.–Photosynth. Res. 93: 235–244, 2007.

    Article  CAS  PubMed  Google Scholar 

  • McConnell M.D., Koop R., Vasil’ev S. et al.: Regulation of the distribution of chlorophyll and phycobilin-absorbed excitation energy in Cyanobacteria.–A structure-based model for the light state transition.–Plant Physiol. 130: 1201–1212, 2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metcalf J.S., Richer R., Cox P.A. et al.: Cyanotoxins in desert environments may present a risk to human health.–Sci. Total Environ. 421: 118–123, 2012.

    Article  PubMed  Google Scholar 

  • Poryvkina L., Babichenko S., Leeben A.: Analysis of phytoplankton pigments by excitation spectra of fluorescence.–EARSeL eProceedings 1: 224–232 2000.

    Google Scholar 

  • Quiblier C., Wood S., Echenique-Subiabre I. et al.: A review of current knowledge on toxic benthic freshwater Cyanobacteria–Ecology, toxin production and risk management.–Water Res. 47: 5464–5479, 2013.

    Article  Google Scholar 

  • Rabinowitch E., Govindjee U.: Photosynthesis. Pp. 102–123. John Wiley & Sons, New York 2013.

    Google Scholar 

  • Richardson T.L., Lawrenz E., Pinckney J.L. et al.: Spectral fluorometric characterization of phytoplankton community composition using the Algae Online Analyser®.–Water Res. 44: 2461–2472, 2010.

    Article  CAS  PubMed  Google Scholar 

  • See J.H., Campbell L., Richardson T.L. et al.: Combining new technologies for determination of phytoplankton community structure in the Northern Gulf of Mexico.–J. Phycol. 41: 305–310, 2005.

    Article  Google Scholar 

  • Seppälä J., Ylöstalo P., Kaitala S. et al.: Ship-of-opportunity based phycocyanin fluorescence monitoring of the filamentous Cyanobacteria bloom dynamics in the Baltic Sea.–Estuar. Coast. Shelf S. 73: 489–500, 2007.

    Article  Google Scholar 

  • Seppälä J., Babichenko S., Leeben A. et al.: Fluorescence diagnostics of phytoplankton bloom in Baltic, Institute of Ecology, Tallinn Estonia.–In: Proceedings of the Six International Conference on Remote Sensing for Marine and Coastal Environments. Pp. 377–383. Environmental Research Institute of Michigan, Ann Arbor 2000.

    Google Scholar 

  • Shedbalkar V.P., Rebeiz C.A.: Chloroplast biogenesis: Determination of the molar extinction coefficients of divinyl chl a and b and their pheophytins.–Anal. Biochem. 207: 261–266, 1992.

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis K., Tsimilli-Michael M., Papageorgiou G.C.: On the question of the light-harvesting role of ß-carotene in photosystem II and photosystem I core complexes.–Plant Physiol. Bioch. 81: 121–127, 2014.

    Article  CAS  Google Scholar 

  • Tang X., Stewart W. K., Vincent L. et al.: Automatic plankton image recognition.–In: Panigrahi S., Ting K.C. (ed.): Artificial Intelligence for Biology and Agriculture. Pp. 177–199. Springer, Dordrecht 1998.

    Chapter  Google Scholar 

  • Trytek M., Janik E., Maksymiec W. et al.: The spectral and catalytic studies of chlorophylls and pheophytins in mimetic biotransformation of a-pinene.–J. Photoch. Photobio. A 223: 14–24, 2011.

    Article  CAS  Google Scholar 

  • van den Hoek C.: Revision of the European Species of Cladophora. Pp. 363. Brill Acad. Publ., Leiden 1963.

    Google Scholar 

  • van Wittenberghe S., Alonso L., Verrelst J. et al.: Upward and downward solar-induced chlorophyll fluorescence yield indices of four tree species as indicators of traffic pollution in Valencia.–Environ. Pollut. 173: 29–37, 2013.

    Article  PubMed  Google Scholar 

  • Vasconcelos V.M.: Cyanobacterial toxins in Portugal: effects on aquatic animals and risk for human health.–Braz. J. Med. Biol. Res. 32: 249–254, 1999.

    Article  CAS  PubMed  Google Scholar 

  • Wacklin P., Hoffmann L., Komárek J.: Nomenclatural validation of the genetically revised Cyanobacterial genus Dolichospermum (Ralfs ex Bornet et Flahault) comb.–Fottea 9: 59–64, 2009.

    Article  Google Scholar 

  • Wang H., Moss R.H., Chen X. et al.: Watershed segmentation of dermoscopy images using a watershed technique.–Skin Res. Technol. 16: 378–384, 2010.

    PubMed  PubMed Central  Google Scholar 

  • Wang H., Moss R.H., Chen X. et al.: Modified watershed technique and post-processing for segmentation of skin lesions in dermoscopy images.–Comput. Med. Imag. Grap. 35: 116–120, 2011.

    Article  CAS  Google Scholar 

  • Wilhelm C., Lenarz-Weiler I.: Energy transfer and pigment composition in three Chl b-containing light-harvesting complexes isolated from Mantoniella squamata (Prasinophyceae), Chlorella fusca (Chlorophyceae) and Sinapis alba.–Photosynth. Res. 13: 101–111, 1987.

    Article  CAS  PubMed  Google Scholar 

  • Wörmke S., Mackowski S., Brotosudarmo T. H. et al.: Monitoring fluorescence of individual chromophores in peridinin–chlorophyll–protein complex using single molecule spectroscopy.–BBA-Bioenergetics 1767: 956–964, 2007.

    Article  PubMed  Google Scholar 

  • Yao H., Duan Q., Li D. et al.: An improved K-means clustering algorithm for fish image segmentation.–Math. Comput. Model. 58: 790–798, 2013.

    Article  Google Scholar 

  • Yentsch C.S., Phinney D.A.: Spectral fluorescence: an ataxonomic tool for studying the structure of phytoplankton populations.–J. Plankton Res. 7: 617–632, 1985.

    Article  CAS  Google Scholar 

  • Zarco-Tejada P.J., Berni J.A.J., Suárez L.: Imaging chlorophyll fluorescence with an airborne narrow-band multispectral camera for vegetation stress detection.–Remote Sens. Environ. 113: 1262–1275, 2009.

    Article  Google Scholar 

  • Ziegmann M., Abert M., Müller M. et al.: Use of fluorescence fingerprints for the estimation of bloom formation and toxin production of Microcystis aeruginosa.–Water Res. 44: 195–204, 2010.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Europe (FEDER), Lorraine region and the project “BioCapTech”. The authors wish to thank emeritus Pr. Jean-Claude Pihan and Dr Cécile Dupouy (IRD, Nouméa) for their advices during the course of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Lauffer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lauffer, M., Genty, F., Margueron, S. et al. Morphological recognition with the addition of multi-band fluorescence excitation of chlorophylls of phytoplankton. Photosynthetica 55, 434–442 (2017). https://doi.org/10.1007/s11099-016-0663-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-016-0663-2

Additional key words

Navigation