Skip to main content
Log in

Chlorophyll fluorescence imaging of photosynthetic activity with the flash-lamp fluorescence imaging system

  • Published:
Photosynthetica

Abstract

A flash-lamp chlorophyll (Chl) fluorescence imaging system (FL-FIS) is described that allows to screen and image the photosynthetic activity of several thousand leaf points (pixels) of intact leaves in a non-destructive way within a few seconds. This includes also the registration of several thousand leaf point images of the four natural fluorescence bands of plants in the blue (440 nm) and green (520 nm) regions as well as the red (near 690 nm) and far-red (near 740 nm) Chl fluorescence. The latest components of this Karlsruhe FL-FIS are presented as well as its advantage as compared to the classical single leaf point measurements where only the fluorescence information of one leaf point is sensed per each measurement. Moreover, using the conventional He-Ne-laser induced two-wavelengths Chl fluorometer LITWaF, we demonstrated that the photosynthetic activity of leaves can be determined measuring the Chl fluorescence decrease ratio, RFd (defined as Chl fluorescence decrease Fd from maximum to steady state fluorescence Fs:Fd/Fs), that is determined by the Chl fluorescence induction kinetics (Kautsky effect). The height of the values of the Chl fluorescence decrease ratio RFd is linearly correlated to the net photosynthetic CO2 fixation rate P N as is indicated here for sun and shade leaves of various trees that considerably differ in their P N. Imaging the RFd-ratio of intact leaves permitted the detection of considerable gradients in photosynthetic capacity across the leaf area as well as the spatial heterogeneity and patchiness of photosynthetic quantum conversion within the control leaf and the stressed plants. The higher photosynthetic capacity of sun versus shade leaves was screened by Chl fluorescence imaging. Profile analysis of fluoresence signals (along a line across the leaf area) and histograms (the signal frequency distribution of the fluorescence information of all measured leaf pixels) of Chl fluorescence yield and Chl fluorescence ratios allow, with a high statistical significance, the quantification of the differences in photosynthetic activity between various areas of the leaf as well as between control leaves and water stressed leaves. The progressive uptake and transfer of the herbicide diuron via the petiole into the leaf of an intact plant and the concomitant loss of photosynthetic quantum conversion was followed with high precision by imaging the increase of the red Chl fluorescence F690. Differences in the availability and absorption of soil nitrogen of crop plants can be documented via this flash-lamp fluorescence imaging technique by imaging the blue/red ratio image F440/F690, whereas differences in Chl content are detected by collecting images of the fluorescence ratio red/far-red, F690/F740.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Chl:

chlorophyll

Fd :

fluorescence decrease from Fp to Fs

Fm :

maximum Chl fluorescence at a saturating light pulse

Fs :

steady state Chl fluorescence

Fd/Fs :

ratio of Chl fluorescence decrease Fd to steady state Chl fluorescence Fs

FIS:

fluorescence imaging system

FL:

flash-lamp

P N :

net photosynthetic rate

PAR:

photosynthetically active radiation

PPFD:

photosynthetic photon flux density

PS2:

photosystem 2

RFd :

variable Chl fluorescence decrease ratio

References

  • Babani, F., Lichtenthaler, H.K.: Light-induced and age-dependent development of chloroplasts in etiolated barley leaves as visualized by determination of photosynthetic pigments, CO2 assimilation rates and different kinds of chlorophyll fluorescence ratios. — J. Plant Physiol. 148: 555–566, 1996.

    Google Scholar 

  • Baker, N.R., Oxborough, K., Lawson, T., Morison, J.I.L.: High resolution imaging of photosynthetic activities of tissues, cells and chloroplasts in leaves. — J. exp. Bot. 52: 615–621, 2001.

    Article  PubMed  Google Scholar 

  • Barbagallo, R.P., Oxborough, K., Pallett, K.E., Baker, N.R.: Rapid, non-invasive screening for perturbation of metabolism and plant growth using chlorophyll fluorescence imaging. — Plant Physiol. 132: 485–493, 2003.

    Article  PubMed  Google Scholar 

  • Boardman, N.K.: Comparative photosynthesis of sun and shade plants. — Annu. Rev. Plant Physiol. 28: 355–377, 1977.

    Article  Google Scholar 

  • Bolhar-Nordenkampf, H.R., Oquist, G.: Chlorophyll fluorescence as a tool in photosynthesis research. — In: Hall, D.O., Scurlock, J.M.O., Bolhar-Nordenkampf, H.R., Leegood, R.C., Long, S.P. (ed.): Photosynthesis and Production in a Changing Environment: A Field and Laboratory Manual. Pp. 193–206. Chapman & Hall, London-Glasgow-New York-Melbourne-Madras 1993.

    Google Scholar 

  • Bro, E., Meyer, S., Genty, B.: Heterogeneity of leaf CO2 assimilation during photosynthetic induction. — In: Mathis, P. (ed.): Photosynthesis: from Light to Biosphere. Vol. V. Pp. 607–610. Kluwer Academic Publ., Dordrecht-Boston-London 1995.

    Google Scholar 

  • Buschmann, C., Langsdorf, G., Lichtenthaler, H.K.: Imaging of the blue, green and red fluorescence emission of plants. — Photosynthetica 38: 483–491, 2000.

    Article  Google Scholar 

  • Buschmann, C., Lichtenthaler, H.K.: Principles and characteristics of multi-colour fluorescence imaging of plants.-J. Plant Physiol. 152: 297–314, 1998.

    Google Scholar 

  • Chaerle, L., van der Straeten, D.: Seeing is believing: imaging techniques to monitor plant health.-Biochim. biophys. Acta 1519: 153–166, 2001.

    PubMed  Google Scholar 

  • D'Ambrosio, N., Szabo, K., Lichtenthaler, H.K.: Increase of the chlorophyll fluorescence ration F690/F735 during the autumnal chlorophyll breakdown. — Radiat. environ. Biophys. 31: 51–62, 1992.

    Article  PubMed  Google Scholar 

  • Edner, H., Johansson, J., Svanberg, S., Lichtenthaler, H.K., Lang, M., Stober, F., Schindler, C., Bjorn, L.-O.: Remote multi-colour fluorescence imaging of selected broad-leaf plants. — EARSel Adv. remote Sensing 3: 2–14, 1995.

    Google Scholar 

  • Genty, B., Briantais, J.-M., Baker, N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. — Biochim. biophys. Acta 990: 87–92, 1989.

    Google Scholar 

  • Gitelson, A.A., Buschmann, C., Lichtenthaler, H.K.: Leaf chlorophyll fluorescence corrected for reabsorption by means of absorption and reflectance measurements. — J. Plant Physiol. 152: 283–296, 1998.

    Google Scholar 

  • Govindjee: Sixty three years since Kautsky: Chlorophyll a fluorescence. — Aust. J. Plant Physiol. 22: 131–160, 1995.

    Google Scholar 

  • Govindjee: Chlorophyll a fluorescence, a bit of basics and history. — In: Papageorgiou, G.C., Govindjee (ed.): Chlorophyll Fluorescence: a Signature of Photosynthesis. Pp. 1–42. Springer, Dordrecht 2004.

    Google Scholar 

  • Hak, R., Lichtenthaler, H.K., Rinderle, U.: Decrease of the chlorophyll fluorescence ratio F690/F730 during greening and development of leaves. — Radiat. environ. Biophys. 28: 329–336, 1990.

    Article  Google Scholar 

  • Hill, R., Schreiber, U., Gademann, R., Larkum, A.W.D., Kuhl, M., Ralph, P.J.: Spatial heterogeneity of photosynthesis and the effect of temperature-induced bleaching conditions in three species of corals. — Mar. Biol. 144: 633–640, 2004.

    Article  Google Scholar 

  • Holub, O., Seufferheld, M.J., Gohlke, C., Govindjee, Clegg. R.M.: Fluorescence lifetime imaging (FLI) in real-time-a new technique in photosynthesis research. — Photosynthetica 38: 581–599, 2000.

    Article  Google Scholar 

  • Kautsky, H., Hirsch, A.: Neue Versuche zur Kohlenstoffassimilation. — Naturwissenschaften 10: 1964, 1931.

    Google Scholar 

  • Krause, G.H., Weis, E.: Chlorophyll fluorescence and photosynthesis: the basics. — Annu. Rev. Plant Physiol. Plant mol. Biol. 42: 313–349, 1991.

    Article  Google Scholar 

  • Lang, M., Lichtenthaler, H.K., Sowinska, M., Summ, P., Heisel, F.: Blue, green and red fluorescence signatures and images of tobacco leaves. — Bot. Acta 107: 230–236, 1994.

    Google Scholar 

  • Lang, M., Siffel, P., Braunova, Z., Lichtenthaler, H.K.: Investigations of the blue-green fluorescence emission of plant leaves. — Bot. Acta 105: 435–440, 1992.

    Google Scholar 

  • Langsdorf, G., Buschmann, C., Sowinska, M., Babani, F., Mokry, M., Timmermann, F., Lichtenthaler, H.K.: Multicolour fluorescence imaging of sugar beet leaves with different nitrogen status by flash lamp UV-excitation.-Photosynthetica 38: 539–551, 2000.

    Article  Google Scholar 

  • Lichtenthaler, H.K.: Chlorophylls and carotenoids-pigments of photosynthetic biomembranes. — In: Colowick, S.P., Kaplan, N.O. (ed.): Methods in Enzymology. Vol. 148. Pp. 350–382. Academic Press, San Diego-New York-Berkeley-Boston-London-Sydney-Tokyo-Toronto 1987.

    Google Scholar 

  • Lichtenthaler, H.K. (ed.): Applications of Chlorophyll Fluorescence. — Kluwer Acad. Publ., Dordrecht-Boston-London 1988.

    Google Scholar 

  • Lichtenthaler, H.K.: The Kautsky effect: 60 years of chlorophyll fluorescence induction kinetics.-Photosynthetica 27: 45–55, 1992.

    Google Scholar 

  • Lichtenthaler, H.K.: Vegetation stress: an introduction to the stress concept in plants. — J. Plant Physiol. 148: 4–14, 1996.

    Google Scholar 

  • Lichtenthaler, H.K., Babani, F.: Detection of photosynthetic activity and water stress by imaging the red chlorophyll fluorescence. — Plant Physiol. Biochem. 38: 889–895, 2000.

    Article  Google Scholar 

  • Lichtenthaler, H.K., Babani, F.: Light adaptation and senescence of the photosynthetic apparatus. Changes in pigment composition, chlorophyll fluorescence parameters and photosynthetic activity. — In: Papageorgiou, G.C., Govindjee (ed.): Chlorophyll Fluorescence: a Signature of Photosynthesis. Pp. 713–736. Springer, Dordrecht 2004.

    Google Scholar 

  • Lichtenthaler, H.K., Babani, F., Langsdorf, G., Buschmann, C.: Measurement of differences in red chlorophyll fluorescence and photosynthetic activity between sun and shade leaves by fluorescence imaging. — Photosynthetica 38: 521–529, 2000.

    Article  Google Scholar 

  • Lichtenthaler, H.K., Burkart, S.: Photosynthesis and high light stress. — Bulg. J. Plant Physiol. 25: 3–16, 1999.

    Google Scholar 

  • Lichtenthaler, H.K., Buschmann, C., Doll, M., Fietz, H.-J., Bach, T., Kozel, U., Meier, D., Rahmsdorf, U.: Photosynthetic activity, chloroplast ultrastructure, and leaf characteristics of high-light and low-light plants and of sun and shade leaves. — Photosynth. Res. 2: 115–141, 1981.

    Article  Google Scholar 

  • Lichtenthaler, H.K., Buschmann, C., Knapp, M.: How to correctly determine chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio RFd of leaves with the PAM fluorometer. — Photosynthetica 43: 379–393, 2005.

    Google Scholar 

  • Lichtenthaler, H.K., Kuhn, G., Prenzel, U., Meier, D.: Chlorophyll-protein levels and stacking degree of thylakoid stacking in radish chloroplasts from high-light, low-light and bentazon-treated plants. — Physiol. Plant. 56: 183–188, 1982.

    Google Scholar 

  • Lichtenthaler, H.K., Lang, M., Sowinska, M., Heisel, F., Miehe, J.A.: Detection of vegetation stress via a new high resolution fluorescence imaging system. — J. Plant Physiol. 148: 599–612, 1996.

    Google Scholar 

  • Lichtenthaler, H.K., Lang, M., Sowinska, M., Summ, P., Heisel, F., Miehe, J.A.: Uptake of th e herbicide diuron (DCMU) as visualized by the fluorescence imaging technique. — Bot. Acta 110: 158–163, 1997.

    Google Scholar 

  • Lichtenthaler, H.K., Miehe, J.A.: Fluorescence imaging as a diagnostic tool for plant stress. — Trends Plant Sci. 2: 316–320, 1997.

    Article  Google Scholar 

  • Lichtenthaler, H.K., Rinderle U.: The role of chlorophyll fluorescence in the detection of stress conditions in plants. — CRC crit. Rev. anal. Chem. 19: S29–S85, 1988.

    Google Scholar 

  • Lichtenthaler, H.K., Schweiger, J.: Cell wall bound ferulic acid, the major substance of the blue-green fluorescence emission of plants. — J. Plant Physiol. 152: 272–282, 1998.

    Google Scholar 

  • Meier, D., Lichtenthaler, H.K.: Ultrastructural development of chloroplasts in radish seedlings grown at high and low light conditions and in the presence of the herbicide bentazon. — Protoplasma 107: 195–207, 1981.

    Article  Google Scholar 

  • Nedbal, L., Soukupova, J., Kaftan, D., Whitmarsh, J., Trtilek, M.: Kinetic imaging of chlorophyll fluorescence using modulated light. — Photosynth. Res. 66: 3–12, 2000.

    Article  Google Scholar 

  • Nedbal, L., Whitmarsh, J.: Chlorophyll fluorescence imaging of leaves and fruits. — In: Papageorgiou, G., Govindjee (ed.): Chlorophyll Fluorescence, a Signature of Photosynthesis. Pp. 389–407. Springer, Dordrecht 2004.

    Google Scholar 

  • Osmond, C.B., Kramer, D., Luttge, U.: Reversible, water stress-induced non-uniform chlorophyll fluorescence quenching in wilting leaves of Potentilla reptans may not be due to patchy stomatal responses. — Plant Biol. 1: 618–624, 1999.

    Google Scholar 

  • Oxborough, K.: Imaging of chlorophyll a fluorescence: theoretical and practical aspects of an emerging technique for the monitoring of photosynthetic performance. — J. exp. Bot. 55: 1195–1205, 2004.

    Article  PubMed  Google Scholar 

  • Papageorgiou, G.C., Govindjee (ed.): Chlorophyll a Fluorescence, a Signature of Photosynthesis.-Springer, Dordrecht 2004.

    Google Scholar 

  • Santrucek, J., Siffel, P., Lang, M., Lichtenthaler, H.K., Schindler, C., Synkova, H., Konecna, V., Szabo, K.: Photosynthetic activity and chlorophyll fluorescence parameters in aurea and green forms of Nicotiana tabacum. — Photosynthetica 27: 529–543, 1992.

    Google Scholar 

  • Schindler, C., Lichtenthaler, H.K.: Photosynthetic CO2 assimilation, chlorophyll fluorescence and zeaxanthin accumulation in field grown maple trees in the course of a sunny and a cloudy day. — J. Plant Physiol. 148: 399–412, 1996.

    Google Scholar 

  • Schreiber, U., Schliwa, U., Bilger, W.: Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorimeter. — Photosynth. Res. 10: 51–62, 1986.

    Google Scholar 

  • Siffel, P., Santrucek, J., Lang, M., Braunova, Z., Simkova, M., Synkova, H., Lichtenthaler, H.K.: Age dependence of photosynthetic activity, chlorophyll fluorescence parameters and chloroplast ultrastructure in aurea and green forms of Nicotiana tabacum Su/su mutant. — Photosynthetica 29: 81–94, 1993.

    Google Scholar 

  • Sowinska, M., Cunin, B., Deruyver, A., Heisel, F., Miehe, J.-A., Langsdorf, G., Lichtenthaler, H.K: Near-field measurements of vegetation by laser-induced fluorescence imaging. — SPIE 3868: 120–131, 1999.

    Article  Google Scholar 

  • Stober, F., Lang, M., Lichtenthaler, H.K.: Blue, green and red fluorescence emission signatures of green, etiolated, and white leaves. — Remote Sens. Environ. 47: 65–71, 1994.

    Article  Google Scholar 

  • Stober, F., Lichtenthaler, H.K.: Studies on the constancy of the blue and green fluorescence yield during the chlorophyll fluorescence induction kinetics (Kautsky effect). — Radiat. environ. Biophys. 32: 357–365, 1993.

    Article  PubMed  Google Scholar 

  • Strasser, R.J., Srivastava, A., Tsimilli-Michael, M.: The fluorescence transient as a tool to characterize and screen photosynthetic samples. — In: Yunus, M., Pathre, U., Mohanty, P., (ed.): Probing Photosynthesis: Mechanism, Regulation and Adaptation. Pp. 445–483. Taylor & Francis, London 1998.

    Google Scholar 

  • Szabo, K., Lichtenthaler, H.K., Kocsanyi, L., Richter, P.: A CCD-OMA device for the measurement of complete chlorophyll fluorescence emission spectra of leaves during the fluorescence induction kinetics. — Radiat. environ. Biophys. 31: 153–160, 1992.

    Article  PubMed  Google Scholar 

  • Tuba, Z., Lichtenthaler, H.K., Csintalan, Z., Nagy, Z., Szente, K.: Reconstitution of chlorophylls and photosynthetic CO2 assimilation upon rehydration of the desiccated poikilo-chlorophyllous plant Xerophyta scabrida (Pax) Th. Dur. et Schinz. — Planta 192: 414–420, 1994.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. K. Lichtenthaler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lichtenthaler, H.K., Langsdorf, G., Lenk, S. et al. Chlorophyll fluorescence imaging of photosynthetic activity with the flash-lamp fluorescence imaging system. Photosynthetica 43, 355–369 (2005). https://doi.org/10.1007/s11099-005-0060-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-005-0060-8

Additional key words

Navigation