Skip to main content
Log in

Low doses of Pb affected Lactuca sativa photosynthetic performance

  • Published:
Photosynthetica

Abstract

The effects of soil and water contamination by lead (Pb) and the consequences on plant growth and yield are of great concern worldwide. Limits of the Pb concentration in water have been established by governmental institutions but these differ from each other. In this study, Lactuca sativa (var. Reine de Mai) plants were exposed to low Pb(NO3)2 doses (0.05–20 mg L−1), including the recommended limit values for irrigation water by the Food and Agriculture Organization (FAO). After 28 d of exposure, lettuce plants did not present visible morphological alterations or growth impairment, but CO2 assimilation rate (P N), photochemical quenching, and effective quantum efficiency of PSII were negatively affected, while intercellular CO2 concentration, stomatal conductance, or transpiration rate were not influenced. Our results suggested that limitations on photosynthesis occurred from different reasons than due to the decrease of internal CO2 availability, alterations of photophosphorylation, and/or electron transport rate. Thus, this lettuce cultivar showed photosynthetic susceptibility to low doses of Pb, even at lower concentrations than those maximal allowed for irrigation water by FAO. Furthermore, P N seemed to be the most sensitive biomarker for evaluation of Pb susceptibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Chl:

chlorophyll

C i :

intercellular CO2 concentration

DM:

dry mass

ETR:

electron transport rate

F:

steady-state fluorescence

F0 :

minimal fluorescence yield of the dark-adapted state

FAO:

Food and Agriculture Organization

FM:

fresh mass

Fm :

maximal fluorescence yield of the dark-adapted state

Fm':

maximal fluorescence yield of the light-adapted state

Fv/Fm :

maximum photochemical efficiency of PSII

g s :

stomatal conductance

LS:

leaf succulence

NPQ:

nonphotochemical quenching

P N :

net photosynthetic rate

qP :

photochemical quenching coefficient

TSS:

total soluble sugar

WC:

water content

ФPSII:

actual photochemical efficiency of PSII

References

  • Abadin H., Ashizawa A., Stevens Y-W. et al.: Potential for human exposure. - In: Abadin H., Ashizawa A., Stevens Y-W. et al (ed.): Toxicological Profile for Lead. Pp. 301–380. U.S. Dep. Health Human Serv., Atlanta 2007.

    Google Scholar 

  • Ahmad M.S., Ashraf M., Tabassam Q. et al.: Lead (Pb)-induced regulation of growth, photosynthesis, and mineral nutrition in maize (Zea mays L.) plants at early growth stages.–Biol. Trace Elem. Res. 144: 1229–1239, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Ali B., Xu X., Gill R.A. et al.: Promotive role of 5-aminolevulinic acid on mineral nutrients and antioxidative defense system under lead toxicity in Brassica napus. - Ind. Crop Prod. 52: 617–626, 2014.

    Article  CAS  Google Scholar 

  • Alkhatib R., Maruthavanan J., Ghoshroy S. et al.: Physiological and ultrastructural effects of lead on tobacco. - Biol. Plantarum 56: 711–716, 2012.

    Article  CAS  Google Scholar 

  • Bharwana S.A., Ali S., Farooq M.A. et al.: Glycine betaineinduced lead toxicity tolerance related to elevated photosynthesis, antioxidant enzymes suppressed lead uptake and oxidative stress in cotton. - Turk. J. Bot. 38: 281–292, 2014.

    Article  CAS  Google Scholar 

  • Bibi M., Hussain M.: Effect of copper and lead on photosynthesis and plant pigments in black gram [Vigna mungo (L.) Hepper]. - B. Environ. Contam. Tox. 74: 1126–1133, 2005.

    Article  CAS  Google Scholar 

  • Burzyński M., Kłobus G.: Changes of photosynthetic parameters in cucumber leaves under Cu, Cd, and Pb stress. - Photosynthetica 42: 505–510, 2004.

    Article  Google Scholar 

  • Capelo A., Dos Santos C.A., Loureiro S., Pedrosa M.A.: Phytotoxicity of lead on Lactuca sativa: effects on growth, mineral nutrition, photosynthetic activity and oxidant metabolism. - Fresen. Environ. Bull. 21: 450–459, 2012.

    CAS  Google Scholar 

  • Cenkci S., Ciğerci I.H., Yildiz M. et al.: Lead contamination reduces chlorophyll biosynthesis and genomic template stability in Brassica rapa L. - Environ. Exp. Bot. 67: 467–473, 2010.

    Article  CAS  Google Scholar 

  • Couée I., Sulmon C., Gouesbet G. et al.: Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. - J. Exp. Bot. 57: 449–459, 2006.

    Article  PubMed  Google Scholar 

  • Feleafel M.N., Mirdad Z.M.: Hazard and effects of pollution by lead on vegetable crops. - J. Agr. Environ. Ethic. 26: 547–567, 2012.

    Article  Google Scholar 

  • Grant L., Davis J., Hasselblad V. et al.: Executive summary and conclusions. - In: Environmental Protection Agency: Air Quality Criteria for Lead. Pp. 1–161. U.S. Environ. Protection Agency, Research Triangle Park, Atlanta 1986.

    Google Scholar 

  • Igwe J.C., Nwokennaya E.C., Abia A.A.: The role of pH in heavy metal detoxification by bio-sorption from aqueous solutions containing chelating agents.–Afr. J.Biotechnol. 4: 1109–1112, 2005.

    CAS  Google Scholar 

  • Irigoyen J.J., Emerich D.W., Sánchez Díaz M.: Water-stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. - Physiol. Plantarum 84: 55–60, 1992.

    Article  CAS  Google Scholar 

  • Kaznina N.M., Laidinen G.F., Titov A.F. et al.: Effect of lead on the photosynthetic apparatus of annual grasses. - Biol. Bull. 32: 147–150, 2005.

    Article  CAS  Google Scholar 

  • Kosobrukhov A., Knyazeva I., Mudrik V.: Plantago major plants responses to increase content of lead in soil: Growth and photosynthesis. - Plant Growth Regul. 42: 145–151, 2004.

    Article  CAS  Google Scholar 

  • Kumar A., Prasad M.N., Sytar O.: Lead toxicity, defense strategies and associated indicative biomarkers in Talinum triangulare grown hydroponically. - Chemosphere 89: 1056–1065, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Lamb D.T., Ming H., Megharaj M. et al.: Relative tolerance of a range of australian native plant species and lettuce to copper, zinc, cadmium, and lead. - Arch. Environ. Con. Tox. 59: 424–432, 2010.

    Article  CAS  Google Scholar 

  • Lamhamdi M., Bakrim A., Aarab A. et al.: Lead phytotoxicity on wheat (Triticum aestivum L.) seed germination and seedlings growth. - CR Biol. 334: 118–126, 2011.

    Article  CAS  Google Scholar 

  • Monteiro M.S., Santos C., Soares A.M., Mann R.M.: Assessment of biomarkers of cadmium stress in lettuce. - Ecotox. Environ. Safe. 72: 811–818, 2009.

    Article  CAS  Google Scholar 

  • Nautiyal N., Sinha P.: Lead induced antioxidant defense system in pigeon pea and its impact on yield and quality of seeds. - Acta Physiol. Plant. 34: 977–983, 2012.

    Article  CAS  Google Scholar 

  • Osaki M., Shinano T., Tadano T.: Redistribution of carbon and nitrogen-compounds from the shoot to the harvesting organs during maturation in field crops. - Soil Sci. Plant Nutr. 37: 117–128, 1991.

    Article  CAS  Google Scholar 

  • Parys E., Romanowska E., Siedlecka M. et al.: The effect of lead on photosynthesis and respiration in detached leaves and in mesophyll protoplasts of Pisum sativum. - Acta Physiol. Plant. 20: 313–322, 1998.

    Article  CAS  Google Scholar 

  • Patra M., Bhowmik N., Bandopadhyay B. et al.: Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. - Environ. Exp. Bot. 52: 199–223, 2004.

    Article  CAS  Google Scholar 

  • Pourrut B., Shahid M., Dumat C. et al.: Lead uptake, toxicity, and detoxification in plants. - Rev. Environ. Contam. T. 213: 113–136, 2011.

    CAS  Google Scholar 

  • Rodriguez E., da Conceição Santos M., Azevedo R. et al.: Photosynthesis light-independent reactions are sensitive biomarkers to monitor lead phytotoxicity in a Pb-tolerant Pisum sativum cultivar. - Environ. Sci. Pollut. Res. Int. 22: 574–585, 2015.

    Article  CAS  PubMed  Google Scholar 

  • Shahid M., Dumat C., Pourrut B. et al.: Influence of EDTA and citric acid on lead-induced oxidative stress to Vicia faba roots. - J. Soil. Sediment. 14: 835–843, 2014.

    Article  Google Scholar 

  • Shahid M., Pinelli E., Pourrut B. et al.: Lead-induced genotoxicity to Vicia faba L. roots in relation with metal cell uptake and initial speciation. - Ecotox. Environ. Safe. 74: 78–84, 2011.

    Article  CAS  Google Scholar 

  • Silva S., Pinto-Carnide O., Martins-Lopes P. et al.: Differential aluminium changes on nutrient accumulation and root differentiation in an Al sensitive vs. tolerant wheat. - Environ. Exp. Bot. 68: 91–98, 2010.

    Article  CAS  Google Scholar 

  • Sims D.A., Gamon J.A.: Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. - Remote Sens. Environ. 81: 337–354, 2002.

    Article  Google Scholar 

  • Tian T., Ali B., Qin Y.B. et al.: Alleviation of lead toxicity by 5- aminolevulinic acid is related to elevated growth, photosynthesis, and suppressed ultrastructural damages in oilseed rape. - BioMed. Res. Int. 2014: 530–642, 2014.

    Google Scholar 

  • van Kooten O., Snel J.F.: The use of chlorophyll fluorescence nomenclature in plant stress physiology. - Photosynth. Res. 25: 147–150, 1990.

    Article  PubMed  Google Scholar 

  • Verma S., Dubey R.S.: Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. - Plant Sci. 164: 645–655, 2003.

    Article  CAS  Google Scholar 

  • Wierzbicka M.: Comparison of lead tolerance in Allium cepa with other plant species. - Environ. Pollut. 104: 41–52, 1999.

    Article  CAS  Google Scholar 

  • Wu X., Liu C., Qu C.X. et al.: Effects of lead on activities of photochemical reaction and key enzymes of carbon assimilation in spinach chloroplast. - Biol. Trace Elem. Res. 126: 269–279, 2008.

    Article  CAS  Google Scholar 

  • Yan Z.Z., Tam N.F.Y.: Differences in lead tolerance between Kandelia obovata and Acanthus ilicifolius seedlings under varying treatment times. - Aquat. Toxicol. 126: 154–162, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Zeng L.S., Liao M., Chen C.L. et al.: Effects of lead contamination on soil microbial activity and rice physiological indices in soil-Pb-rice (Oryza sativa L.) system. - Chemosphere 65: 567–574, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Zhao S.P., Ye X.Z., Zheng J.C.: Lead-induced changes in plant morphology, cell ultrastructure, growth and yields of tomato. - Afr. J. Biotechnol. 10: 10116–10124, 2011.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Silva.

Additional information

Acknowledgements

FCT/MCT supported S. Silva (FCT/BPD/74299/2010) and G. Pinto (SFRH/BPD/101669/2014) grants from the financing program QREN-POPH/FSE — Tipologia 4.1–Formação Avançada. We thank for the financial support to CESAM (UID/AMB/50017), to FCT/MEC through national funds, and the co-funding by the FEDER, within the PT2020 Partnership Agreement and Compete 2020, also this work was funded by FEDER/COMPET/POCI, POCI-01-0145-FEDER-006958 (UID/AGR/04033/2013) and UI QOPNA (Ref. FCT UID/QUI/00062/2013).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, S., Pinto, G. & Santos, C. Low doses of Pb affected Lactuca sativa photosynthetic performance. Photosynthetica 55, 50–57 (2017). https://doi.org/10.1007/s11099-016-0220-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-016-0220-z

Additional key words

Navigation