Skip to main content

Advertisement

Log in

Comparison of morphological and physiological characteristics in two phenotypes of a rare and endangered plant, Begonia fimbristipula Hance

  • Original papers
  • Published:
Photosynthetica

Abstract

The rare and endangered plant, Begonia fimbristipula, shows red and green phenotypes, differentiated by a coloration of the abaxial leaf surface. In this study, we compared morphological and physiological traits of both phenotypes. The results showed that the red phenotype contained a significantly higher chlorophyll content, closer arrangement of chloroplasts, and a more developed grana. In addition, the red phenotype transferred significantly more light energy into the electron transport during the photoreaction. Similarly, the maximum photosynthetic rate, instantaneous water-use and light-use efficiencies of the red B. fimbristipula were all significantly higher than those of the green individuals. The differentiation between these two phenotypes could be caused by their different survival strategies under the same conditions; epigenetic variations may be in some correlation with this kind of phenotype plasticity. Red B. fimbristipula has an advantage in resource acquisition and utilization and possesses a better self-protection mechanism against changes in environmental conditions, therefore, it might adapt better to global climate change compared to the green phenotype. Further studies on the possible epigenetic regulation of those phenotypic differentiations are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AQY:

apparent quantum yield

Car:

carotenoids

Chl:

chlorophyll

F0 :

minimal fluorescence yield of the darkadapted state

F0':

minimal fluorescence yield of the light-adapted state

Fm :

maximal fluorescence yield of the dark-adapted state

Fm':

maximal fluorescence yield of the light-adapted state

Fs :

steady-state fluorescence yield

Fv/Fm :

maximal quantum yield of PSII photochemistry

ILUE:

instantaneous light-use efficiency

IWUE:

instantaneous water-use efficiency

LA:

leaf area

LCP:

lightcompensation point

LSP:

light-saturation point

NPQ:

nonphotochemical quenching

P max :

light-saturated net photosynthetic rate

P N :

net photosynthetic rate

qP:

photochemical fluorescence quenching coefficient

R D :

respiration rate

SEM:

scanning electron microscope

SLA:

specific leaf area

References

  • Abraham E.M., Kyriazopoulos A.P., Parissi Z.M.: Growth, dry matter production, phenotypic plasticity, and nutritive value of three natural populations of Dactylis glomerata L. under various shading treatments.–Agroforest. Syst. 88: 287–299, 2014.

    Article  Google Scholar 

  • Allen J.F., Forsberg J.: Molecular recognition in thylakoid structure and function.–Trends Plant Sci. 6: 317–326, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Allis C.D., Jenuwein T., Reinberg D. et al. (ed.): Epigenetics. Pp. 408. Cold Spring Harbor Lab. Press, New York 2007.

    Google Scholar 

  • Boyko A., Kovalchuk I.: Epigenetic control of plant stress.–Environ. Mol. Mutagen. 49: 61–72, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Bradshaw A.D.: Evolutionary significance of phenotypic plasticity in plants.–Adv. Genet. 13: 115–155, 1965.

    Article  Google Scholar 

  • Chinnusamy V., Zhu J.K.: Epigenetic regulation of stress responses in plants.–Curr. Opin. Plant. Biol. 12: 133–139, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clausen J., Keck D., Hiesey W.M.: Experimental Studies on the Nature of Species. I. Effect of Varied Environments on Western North American Plants. Pp. 132. Carnegie Inst. Washington, Washington DC 1940.

    Google Scholar 

  • Coley P.D., Aide T.M.: Red coloration of tropical young leaves: a possible antifungal defence?–J. Trop. Ecol. 5: 293–300, 1989.

    Article  Google Scholar 

  • Cooney L.J., Van Klink J.W., Hughes N.M. et al.: Red leaf margins indicate increased polygodial content and function as visual signals to reduce herbivory in Pseudowintera colorata.–New Phytol. 194: 488–497, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Dalling J.W., Winter K., Nason J.D. et al.: The unusual life history of Alesis blackiana: a shade-persistent pioneer tree?–Ecology 82: 933–945, 2001.

    Article  Google Scholar 

  • Davidson A.M., Jennions M., Nicotra A.B.: Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis.–Ecol. Lett. 14: 419–431, 2011.

    Article  PubMed  Google Scholar 

  • Demmig-Adams B., Adams W.W.: Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation.–New Phytol. 172: 11–21, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Deng Y., Li C., Shao Q. et al.: Differential responses of double petal and multi petal jasmine to shading: I. Photosynthetic characteristics and chloroplast ultrastructure.–Plant Physiol. Bioch. 55: 93–102, 2012a.

    Article  CAS  Google Scholar 

  • Deng Y., Shao Q., Li C. et al.: Differential responses of double petal and multi petal jasmine to shading: II. Morphology, anatomy and physiology.–Sci. Hortic.-Amsterdam 144: 19–28, 2012b.

    Article  Google Scholar 

  • Donato A.M., de Morretes B.L.: Plinia edulis–leaf architecture and scanning electron micrographs.–Braz. J. Pharmacogn. 23: 410–418, 2013.

    Article  Google Scholar 

  • Dong M.: [Survey, Observation and Analysis of Terrestrial Biocommunities]. Pp. 38. Chinese Standard Press, Beijing 1996.[In Chinese]

    Google Scholar 

  • Gould K.S.: Nature’s Swiss army knife: The diverse protective roles of anthocyanins in leaves.–J. Biomed. Biotechnol. 5: 314–320, 2004.

    Article  Google Scholar 

  • Gu C.Z.: [Flora of China]. Pp. 194. Science Press, Beijing 1999.[In Chinese]

    Google Scholar 

  • Henderson I.R., Jacobsen S.E.: Epigenetic inheritance in plants.–Nature 447: 418–424, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Holton T.A., Cornish E.C.: Genetics and biochemistry of anthocyanin biosynthesis.–Plant Cell 7: 1071–1083, 1995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes N. M.: The photoprotective role of anthocyanin pigment in leaf tissues.–Photosynthetica 46: 637–640, 2009.

    Google Scholar 

  • Joesting H.M., McCarthy B.C., Brown K.J.: Determining the shade tolerance of American chestnut using morphological and physiological leaf parameters.–Forest. Ecol. Manage. 257: 280–286, 2009.

    Article  Google Scholar 

  • Kim B.G., Kim J.H., Min S.Y. et al.: Anthocyanin content in rice is related to expression levels of anthocyanin biosynthetic genes.–J. Plant Biol. 50: 156–160, 2007.

    Article  CAS  Google Scholar 

  • Kitajima M., Butler W.L.: Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone.–Biochim. Biophys. Acta 376: 105–115, 1975.

    Article  CAS  PubMed  Google Scholar 

  • Koerselman W., Meuleman A.F.M.: The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation.–J. Appl. Ecol. 33: 1441–1450, 1996.

    Article  Google Scholar 

  • Kordyum E., Klimenko E.: Chloroplast ultrastructure and chlorophyll performance in the leaves of heterophyllous Nuphar lutea (L.) Smith plants.–Aquat. Bot. 110: 84–91, 2013.

    Article  CAS  Google Scholar 

  • Kubis S.E., Castilho A.M., Vershinin A.V. et al.: Retroelements, transposons and methylation status in the genome of oil palm (Elaeis guineensis) and the relationship to somaclonal variation.–Plant. Mol. Biol. 52: 69–79, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Kurepin L.V., Farrow S., Walton L.J. et al.: Phenotypic plasticity of sun and shade ecotypes of Stellaria longipes in response to light quality signaling: Cytokinins.–Environ. Exp. Bot. 84: 25–32, 2012.

    Article  Google Scholar 

  • Landhäusser S.M., Lieffers V.J.: Photosynthesis and carbon allocation of six boreal tree species grown in understory and open conditions.–Tree Physiol. 21: 243–250, 2001.

    Article  PubMed  Google Scholar 

  • Lee D.W.: Anthocyanins in leaves: distribution, phylogeny and development.–Adv. Bot. Res. 37: 37–53, 2002.

    Article  CAS  Google Scholar 

  • Lee D.W., Collins T.M.: Phylogenetic and ontogenetic influences on the distribution of anthocyanins and betacyanins in leaves of tropical plants.–Int. J. Plant Sci. 162: 1141–1153, 2001.

    Article  CAS  Google Scholar 

  • Lee D.W., Gould K.S.: Anthocyanins in leaves and other vegetative organs: An introduction.–Adv. Bot. Res. 37: 1–16, 2002.

    Article  CAS  Google Scholar 

  • Li Q.Z., Li C.W., Yang T.W.: [Stress response and memory mediated by DNA methylation in plants.]–Plant Physiol. J. 50: 725–734, 2014.[In Chinese]

    CAS  Google Scholar 

  • Li H., Zhang G.C., Xie H.C., et al.: The effects of the phenol concentrations on photosynthetic parameters of Salix babylonica L.–Photosynthetica 53: 430–435, 2015.

    Article  CAS  Google Scholar 

  • Lin Z.F., Li S.S., Lin G.Z., et al.: Superoxide dismutase activity and lipid peroxidation in relation to senescence of rice leaves.–Acta. Bot. Sin. 26: 605–615, 1984.

    CAS  Google Scholar 

  • Liu N., Guan L.: Linkages between woody plant proliferation dynamics and plant physiological traits in southwestern North America.–J. Plant. Ecol. 5: 407–416, 2012.

    Article  Google Scholar 

  • Mattick J.S.: Non-coding RNAs: the architects of eukaryotic complexity.–EMBO Rep. 2: 986–991, 2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maxwell K., Johnson G.N.: Chlorophyll fluorescence–a practical guide.–J. Exp. Bot. 51: 659–668, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Moreira N.S., Nascimento L.B.S., Leal-Casta M.V. et al.: Comparative anatomy of leaves of Kalanchoe pinnata and K. crenata in sun and shade conditions, as a support for their identification.–Braz. J. Pharmacogn. 22: 929–936, 2012.

    Article  Google Scholar 

  • Moriuchi K.S., Winn A.A.: Relationships among growth, development and plastic response to environment quality in a perennial plant.–New Phytol. 166: 149–158, 2005.

    Article  PubMed  Google Scholar 

  • Murray J.R., Hackett W.P.: Dihydroflavonol reductase activity in relation to differential anthocyanin accumulation in juvenile and mature phase Hedera helix L.–Plant Physiol. 97: 343–351, 1991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicotra A.B. Atkin O.K., Bonser S.P. et al.: Plant phenotypic plasticity in a changing climate.–Trends Plant Sci. 15: 684–692, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Nijs I., Ferris R., Blum H.: Stomatal regulation in a changing climate: a field study using free air temperature increase (FATI) and free air CO2 enrichment (FACE).–Plant Cell. Environ. 20: 1041–1050, 1997.

    Article  Google Scholar 

  • Parkinson J.A., Allen S.E.: A wet oxidation procedure suitable for the determination of nitrogen and mineral nutrients in biological materials.–Commun. Soil Sci. Plant 6: 1–11. 1975.

    Article  CAS  Google Scholar 

  • Pourcel L., Irani N.G., Koo A.J.K. et al.: A chemical complementation approach reveals genes and interactions of flavonoids with other pathways.–Plant J. 74: 383–397, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Reddy V.S., Dash S., Reddy A.R.: Anthocyanin pathway in rice (Oryza sativa L.): identification of a mutant showing dominant inhibition of anthocyanins in leaf and accumulation of proanthocyanins in pericarp.–Theor. Appl. Genet. 91: 301–312, 1995.

    Article  CAS  PubMed  Google Scholar 

  • Schlichting C.D., Smith H.: Phenotypic plasticity: linking molecular mechanisms with evolutionary outcomes.–Evol. Ecol. 16: 189–211, 2002.

    Article  Google Scholar 

  • Schulze E.D., Beck E., Müller-Hohenstein K.: Plant Ecology. Pp. 118. Springer-Verlag, Berlin 2002.

    Google Scholar 

  • Shao L., Liang K., Cheng X.W. et al.: [Effect of sucrose on growth of tissue culture seedling and anthocyanin accumulation in Begonia fimbristipula Hance on Dinghushan Mountain].–Chin. Agr. Sci. Bull. 28: 242–246, 2012.[In Chinese]

    Google Scholar 

  • Shao L., Liang K., Cheng X.W., et al.: [Natural growth characteristics of Begonia fimbristipula Hance population in different habitats of Dinghu Mountain].–Guangdong Agr. Sci. 40: 42–46, 2013.[In Chinese]

    Google Scholar 

  • Shao Q.S., Wang H.Z., Guo H.P. et al.: Effects of shade treatments on photosynthetic characteristics, chloroplast ultrastructure, and physiology of Anoectochilus roxburghii.–PLOS One. 9: e85996, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  • Si C.C., Dai Z.C., Lin Y. et al.: Local adaptation and phenotypic plasticity both occurred in Wedelia trilobata invasion across a tropical island.–Biol. Invasions 16: 2323–2337, 2014.

    Article  Google Scholar 

  • Škerget M., Kotnik P., Hadolin M. et al.: Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities.–Food. Chem. 89: 191–198, 2005.

    Article  Google Scholar 

  • Souza R.P., Machado E.C., Silva J.A.B. et al.: Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery.–Environ. Exp. Bot. 51: 45–56, 2004.

    Article  CAS  Google Scholar 

  • Sultan S.E.: Phenotypic plasticity for plant development, function and life history.–Trends Plant Sci. 5: 537–542, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Sun Y.Q., Yan F., Cui X.Y. et al.: Plasticity in stomatal size and density of potato leaves under different irrigation and phosphorus regimes.–J. Plant Physiol. 171: 1248–1255, 2014.

    Article  CAS  PubMed  Google Scholar 

  • Tessier J.T., Raynal D.J.: Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation.–J. Appl. Ecol. 40: 523–534, 2003.

    Article  CAS  Google Scholar 

  • Titus J., Sullivan P.G.: Heterophylly in the yellow waterlily, Nuphar variegate (Nymphaeaceae): effects of [CO2], natural sediment type, and water depth.–Am. J. Bot. 88: 1469–1478, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Wells C.L., Pigliucci M.: Adaptive phenotypic plasticity: the case of heterophylly in aquatic plants.–Perspect. Plant Ecol. 3: 1–18, 2000.

    Article  Google Scholar 

  • Wolffe A.P., Matzke M.A.: Epigenetics: regulation through repression.–Science 286: 481–486, 1999.

    Article  CAS  PubMed  Google Scholar 

  • Xing F.W.: [Rare plants of China]. Pp. 129. Hunan Educ. Publ. House, Changsha 2005.[In Chinese]

    Google Scholar 

  • Xu X., Lu Z., Luo Y.F.: [Determination of trace elements in different graded leaves in Begonia fimbristipula Hance].–Guangdong. Trace. Elem. Sci. 4: 55–57, 2000.[In Chinese]

    Google Scholar 

  • Ye Z.P., Yu Q.: A coupled model of stomatal conductance and photosynthesis for winter wheat.–Photosynthetica 46: 637–640, 2008.

    Article  Google Scholar 

  • Yuan Y.Y., Chiu L.W., Li L.: Transcriptional regulation of anthocyanin biosynthesis in red cabbage.–Planta 230: 1141–1153, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Zhang L.Y., Li G.G.: [The factors affecting anthocyanin content in plantlets of Begonia fimbristipula in vitro II].–Acta. Bot. Yunnanica 8: 60–66, 1986.[In Chinese]

    CAS  Google Scholar 

  • Zhang L.Y., Li G.G., Guo J.Y.: [Some factors affecting the anthocyanin content in plantlets of Begonia fimbristipula in vitro I].–Acta Bot. Yunnanica 7: 195–202, 1985.[In Chinese]

    Google Scholar 

  • Zilberman D., Henikoff S.: Epigenetic inheritance in Arabidopsis: selective silence.–Curr. Opin. Genet. Dev. 15: 557–562, 2005

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ren.

Additional information

Acknowledgments: The authors express their gratitude to Dr. Nan Liu and Mr. Zhifang Lin for valuable suggestions for this research; to Dr. Shuguang Jian and Shizhong Liu for fieldwork assistance; to Mrs. Chunqing Long, Mrs. Rufang Deng, and Mrs. Xiaoying Hu for index measurements. This research was supported by Guangzhou Science and Technology Program (2014J4500035), and National Natural Science Foundation of China (31570422). Thanks are also due to Prof. Jennifer Richards and Ms. Elizabeth Hamblin for English editing and constructive comments.

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Shao, L., Wang, J. et al. Comparison of morphological and physiological characteristics in two phenotypes of a rare and endangered plant, Begonia fimbristipula Hance. Photosynthetica 54, 381–389 (2016). https://doi.org/10.1007/s11099-016-0199-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-016-0199-5

Additional key words

Navigation