Skip to main content
Log in

Effect of high light intensity on photoinhibition, oxyradicals and artemisinin content in Artemisia annua L.

  • Original Papers
  • Published:
Photosynthetica

Abstract

Artemisia annua L. produces a compound called artemisinin that is a potent anti-malarial compound. However concentration of artemisinin within the plant is typically low (less than 0.8% of dry mass) and currently supply of the drug by the plant does not meet world demand. This investigation was carried out to determine whether high intensity light treatment would increase production of artemisinin in leaves of A. annua. Photoinhibition (14%) was induced in leaves of A. annua when they were subjected to 6 h of high-intensity light [2,000 μmol(photon) m-2 s−1]. Maximum photochemical efficiency of PSII showed a recovery of up to 95% within 24 h of light induced inhibition. During the light treatment, photochemical efficiency of PSII in leaves of the high-intensity light-treated plants was 38% lower than for those from leaves of plants subjected to a low-intensity-light treatment of 100 μmol(photon) m-2 s−1. Nonphotochemical quenching of excess excitation energy was 2.7 times higher for leaves treated with high-intensity light than for those irradiated with low-intensity light. Elevation in oxidative stress in irradiated leaves increased presence of reactive oxygen species (ROS) including singlet oxygen, superoxide anions, and hydrogen peroxide. Importantly, the concentration of artemisinin in leaves was two-fold higher for leaves treated with high-intensity light, as compared to those treated with low-intensity light. These results indicate that A. annua responds to high irradiance through nonphotochemical dissipation of light energy yet is subject to photoinhibitory loss of photosynthetic capacity. It can be concluded that A. annua is capable of rapid recovery from photoinhibition caused by high light intensity. High light intensity also induced oxidative stress characterized by increased concentration of ROS which enhanced the content of artemisinin. Such a light treatment may be useful for the purpose of increasing artemisinin content in A. annua prior to harvest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACT:

artemisinin-based combination therapy

APX:

ascorbate peroxidase

FM:

fresh mass

Fm :

maximal fluorescence yield of the dark-adapted state

Fm′:

maximal fluorescence yield of the light-adapted state

Fs :

steady-state fluorescence yield

Fv :

variable fluorescence

Fv/Fm :

maximal quantum yield of PSII photochemistry

HPLC:

high pressure liquid chromatography

NPQ:

nonphotochemical quenching of PSII

ROS:

reactive oxygen species

qP :

photochemical quenching coefficient

SD:

standard deviation

UV-B:

ultraviolet-B

UV-C:

ultraviolet-C

ΦPSII :

quantum efficiency of PSII

WHO:

World Health Organization

References

  • Abdin M.Z., Israr M., Rehman R.U., Jain S.K.: Artemisinin, a novel antimalarial drug: biochemical and molecular approaches for enhanced production. — Planta Med. 69: 289–299, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Able A.J., Guest D.I., Sutherland M.W.: Use of a new tetrazolium-based assay to study the production of superoxide radicals by tobacco cell cultures challenged with avirulent zoospores of Phytophthora parasitica var nicotianae. — Plant Physiol. 117: 491–499, 1998.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Aftab T., Khan M.M.A., Idrees M. et al.: Stimulation of crop productivity, photosynthesis and artemisinin production in Artemisia annua L. by triacontanol and gibberellic acid application. — J. Plant Interact. 5: 273–281, 2010a.

    Article  CAS  Google Scholar 

  • Aftab T., Khan M.M.A., Idrees M. et al.: Boron induced oxidative stress, antioxidant defense response and changes in artemisinin content in Artemisia annua L. — J. Agron. Crop Sci. 196: 423–430, 2010b.

    Article  CAS  Google Scholar 

  • Aftab T., Khan M.M.A., Teixeira da Silva J.A. et al.: Role of salicylic acid in promoting salt stress tolerance and enhanced artemisinin production in Artemisia annua L. — J. Plant Growth Regul. 30: 425–435, 2011

    Article  CAS  Google Scholar 

  • Apel K., Hirt H.: Reactive oxygen species: metabolism, oxidative stress, and signal transduction. — Annu. Rev. Plant Biol. 55: 373–399, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Asada K.: The water-water cycle in chloroplasts: scavenging of active oxygen species and dissipation of excess photons. — Annu. Rev. Plant. Biol. 50: 601–639, 1999.

    Article  CAS  Google Scholar 

  • Asada K., Takahashi M.: Production and scavenging of active oxygen in photosynthesis. — In: Kyle D.J., Osmond C.B., Arntzen C.J. (ed.): Photoinhibition (Topics in Photosynthesis, Vol. 9) Pp. 227–287. Elsevier, Amsterdam 1987.

    Google Scholar 

  • Asada K.: Production and scavenging of reactive oxygen species in chloroplasts and their functions. — Plant Physiol. 141: 391–396, 2006.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Banyai W., Mii M., Supaibulwatana K.: Enhancement of artemisinin content and biomass in Artemisia annua by exogenous GA3 treatment. — Plant Growth Regul. 63: 45–54, 2011.

    Article  CAS  Google Scholar 

  • Brisibe E.A., Chukwurah P.N.: Production of artemisinin in planta and in microbial systems need not be mutually exclusive: — In: Aftab T., Ferreira J.F.S., Khan M.M.A., Naeem M. (ed.): Artemisia annua — Pharmacology and Biotechnology. Pp. 269–292. Springer, Berlin 2014.

    Chapter  Google Scholar 

  • Charles D.J, Simon J.E., Shock C.C. et al.: Effect of water stress and post-harvest handling on artemisinin content in the leaves of Artemisia annua L. — In: Janick J., Simon J.E. (ed.): New Crops. Pp. 628–631. Wiley, New York 1993.

    Google Scholar 

  • Davies M.J., Atkinson C.J., Burns C. et al.: Enhancement of artemisinin concentration and yield in response to optimization of nitrogen and potassium supply to Artemisia annua. — Ann. Bot-London 104: 315–323, 2009.

    Article  CAS  Google Scholar 

  • Delabays N. Simonnet X. Gaudin M.: The genetics of Artemisinin content in Artemisia annua L. and the breeding of high yielding cultivars. — Curr. Med. Chem. 8: 1798–1801, 2001.

    Article  Google Scholar 

  • Efferth T., Romero M.R., Wolf D.G. et al.: The antiviral activities of Artemisinin and Artesunate. — Clin. Infect Dis. 47: 804–811, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Feng L.-L., Yang R.-Y., Yang X.-Q. et al.: Synergistic rechanneling of mevalonate pathway for enhanced artemisinin production in transgenic Artemisia annua. — Plant Sci. 177: 57–67, 2009.

    Article  CAS  Google Scholar 

  • Ferreira J.F.S.: Nutrient deficiency in the production of artemisinin, dihydroartemisinic acid, and artemisinic acid in Artemisia annua L. — J. Agr. Food Chem. 55:1686–1694, 2007.

    Article  CAS  Google Scholar 

  • Ferreira J.F.S., Simon J.E., Janick J.: Developmental studies of Artemisia annua: flowering and artemisinin production under greenhouse and field conditions. — Planta Med. 61: 167–170, 1995.

    Article  CAS  PubMed  Google Scholar 

  • Ferreira J.F.S., Luthria D.L.: Drying affects artemisinin, dihydroartemisinic acid, artemisinic acid, and the antioxidant capacity of Artemisia annua L. leaves. — J. Agr. Food Chem. 58: 1691–1698, 2010.

    Article  CAS  Google Scholar 

  • Ferreira J.F.S., Luthria D.L., Sasaki T., Heyerick A.: Flavonoids from Artemisia annua L. as antioxidants and their potential synergism with artemisinin against malaria and cancer. — Molecules 15: 3135–3170, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Genty B., Briantais J.-M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. — Biochim. Biophys. Acta. 990: 87–92, 1989.

    Article  CAS  Google Scholar 

  • Graham I.A., Besser K., Blumer S. et al.: The genetic map of Artemisia annua L. identifies loci affecting yield of the antimalarial drug artemisinin. — Science 327: 328–331, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Guo X.-X., Yan X.-Q., Yang R.-Y., Zeng Q.-P.: Salicylic acid and methyl jasmonate but not rose bengal enhance artemisinin production through invoking burst of endogenous singlet oxygen. — Plant Sci. 178: 390–397, 2010.

    Article  CAS  Google Scholar 

  • Han J.-L., Liu B.-Y., Ye H.-C. et al.: Effects of overexpression of the endogenous farnesyl diphosphate synthase on the artemisinin content in Artemisia annua L. — J. Integr. Plant Biol. 48: 482–487, 2006.

    Article  CAS  Google Scholar 

  • Horton P., Ruban A.V., Walters R.G.: Regulation of light, harvesting in green plants. — Annu. Rev. Plant Phys. 47: 655–684, 1996.

    Article  CAS  Google Scholar 

  • Ivanescu B., Corciova A.: Artemisinin in cancer therapy. — In: Aftab T., Ferreira J.F.S., Khan M.M.A., Naeem M. (ed.): Artemisia annua — Pharmacology and Biotechnology. Pp. 205–227. Springer, Berlin 2014.

    Chapter  Google Scholar 

  • Kok B.: On the inhibition of photosynthesis by intense light. — Biochim. Biophys. Acta 21: 234–244, 1956.

    Article  CAS  PubMed  Google Scholar 

  • Krishna S., Bustamante L., Haynes R.K., Staines H.M.: Artemisinins: their growing importance in medicine. — Trends Pharmacol. Sci. 29: 520–527, 2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kyle D.J.: The biochemical basis for photoinhibition of photosystem II. — In: Kyle D.J., Osmond C.B., Arntzen C.J. (ed.): Photoinhibition. Pp. 197–226. Elsevier, Amsterdam 1987.

    Google Scholar 

  • Lei C., Ma D., Pu G. et al.: Foliar application of chitosan activates artemisinin biosynthesis in Artemisia annua L. — Ind. Crop Prod. 33: 176–182, 2011.

    Article  CAS  Google Scholar 

  • Li X., Zhao M., Guo L., Huang L.: Effect of cadmium on photosynthetic pigments, lipid peroxidation, antioxidants, and artemisinin in hydroponically grown Artemisia annua. — J. Environ. Sci. 24: 1511–1518, 2012.

    Article  CAS  Google Scholar 

  • Liu D., Zhang L., Li C. et al.: Effect of wounding on gene expression involved in artemisinin biosynthesis and artemisinin production in Artemisia annua. — Russ. J. Plant Physl+ 57: 882–886, 2010.

    Article  CAS  Google Scholar 

  • Logan B.A.: Reactive oxygen species and photosynthesis. — In: Smirnoff N. (ed.): Antioxidants and Reactive Oxygen Species in Plants. Pp. 250–267. Blackwell, Oxford 2005.

    Google Scholar 

  • Mannan A., Liu C., Arsenault P.R. et al.: DMSO triggers the generation of ROS leading to an increase in artemisinin and dihydroartemisinic acid in Artemisia annua shoot cultures. — Plant Cell Rep. 29: 143–152, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marchese J.A., Ferreira J.F.S., Rehder V.L.G., Rodrigues O.: Water deficit effect on the accumulation of biomass and artemisinin in annual wormwood (Artemisia annua L., Asteraceae). — Braz. J. Plant Physiol. 22: 1–9, 2010.

    Article  Google Scholar 

  • Mishra A., Choudhuri M.A.: Effects of salicylic acid on heavy metal-induced membrane deterioration mediated by lipoxygenase in rice. — Biol. Plantarum 42: 409–415, 1999.

    Article  CAS  Google Scholar 

  • Mukherjee S.P., Choudhuri M.A. Implications of water stressinduced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. — Physiol. Plantarum 58: 166–170, 1983.

    Article  CAS  Google Scholar 

  • Müller P., Li X.-P., Niyogi K.N.: Non-Photochemical Quenching. A response to excess light energy. — Plant Physiol. 125: 1558–1566, 2001.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ohad I., Keren N., Zer H. et al.: Light induced degradation of the photochemical reaction center II D1 protein in-vivo: an integrative approach. — In: Baker N.R., Bowyer J.R. (ed.): Photoinhibition of Photosynthesis From Molecular Mechanisms to the Field. Pp. 161–171. Bios Scientific, Oxford 1993.

    Google Scholar 

  • Paddon C. J., Westfall P. J., Pitera D. J. et al.: High-level semisynthetic production of the potent antimalarial artemisinin. — Nature 496: 528–532, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Pandey A.V., Tekwani B.L., Singh R.L., Chauhan V.S.: Artemisinin, an endoperoxide antimalarial, disrupts the hemoglobin catabolism and heme detoxification systems in malarial parasite. — J. Biol. Chem. 274: 19383–19388, 1999.

    Article  CAS  PubMed  Google Scholar 

  • Pu G.-B., Ma D.-M., Chen J.-L. et al.: Salicylic acid activates artemisinin biosynthesis in Artemisia annua L. — Plant Cell Rep. 28: 1127–1135, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Qureshi M.I., Israr M., Abdin M.Z., Iqbal M.: Responses of Artemisia annua L. to lead and salt-induced oxidative stress. — Environ. Exp. Bot. 53: 185–193, 2005.

    Article  CAS  Google Scholar 

  • Rai R., Meena R.P., Smita S.S. et al.: UV-B and UV-C pretreatments induce physiological changes and artemisinin biosynthesis in Artemisia annua L. — An antimalarial plant. — J. Photoch. Photbio. B 105: 216–225, 2011.

    Article  CAS  Google Scholar 

  • Sen R., Ganguly S., Saha P., Chatterjee M.: Efficacy of artemisinin in experimental visceral leishmaniasis. — Int. J. Antimicrob. Ag. 36: 43–49, 2010.

    Article  CAS  Google Scholar 

  • Triantaphylidès C., Krischke M., Hoeberichts F.A. et al.: Singlet oxygen is the major reactive oxygen species involved in photooxidative damage to plants. — Plant Physiol. 148: 960–968, 2008.

    Article  PubMed Central  PubMed  Google Scholar 

  • van Agtmael M.A., Eggelte T.A., van Boxtel C.J.: Artemisinin drugs in the treatment of malaria: from medicinal herb to registered medication. — Trends Pharmacol. Sci. 20: 199–205, 1999.

    Article  PubMed  Google Scholar 

  • Wallaart T.E., van Uden W., Lubberink H.G.M. et al.: Isolation and identification of dihydroartemisinic acid from Artemisia annua and its possible role in the biosynthesis of Artemisinin. — J. Nat. Prod. 62: 430–433, 1999.

    Article  CAS  PubMed  Google Scholar 

  • Wang M.L., Jiang Y.S., Wei J.Q. et al.: Effects of irradiance on growth, photosynthetic characteristics, and artemisinin content of Artemisia annua L. — Photosynthetica 46: 17–20, 2008.

    Article  CAS  Google Scholar 

  • World Health Organization: WHO monograph on good agricultural and collection practices (GACP) for Artemisia annua L. Pp. 58. WHO, Geneva 2006.

    Google Scholar 

  • Zeng Q.-P., Zeng X.-M., Yang R.-Y., Yang X.-Q.: Singlet oxygen as a signaling transducer for modulating artemisinin biosynthetic genes in Artemisia annua. — Biol. Plantarum 55: 669–674, 2011.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Poulson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poulson, M.E., Thai, T. Effect of high light intensity on photoinhibition, oxyradicals and artemisinin content in Artemisia annua L.. Photosynthetica 53, 403–409 (2015). https://doi.org/10.1007/s11099-015-0130-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-015-0130-5

Additional key words

Navigation