Skip to main content
Log in

Simple and accurate allometric model for leaf area estimation in Vitis vinifera L. genotypes

  • Original Papers
  • Published:
Photosynthetica

An Erratum to this article was published on 07 May 2015

Abstract

The aim of the present experiment was to evaluate the currently used allometric models for Vitis vinifera L., as well as to develop a simple and accurate model using linear measurements [leaf length (L) and leaf width (W)], for estimating the individual leaf area (LA) of nine grapevine genotypes. For model construction, a total of 1,630 leaves coming from eight genotypes in 2010 was sampled during different leaf developmental stages and encompassed the full spectrum of leaf sizes. The model with single measurement of L could be considered an interesting option because it requires measurement of only one variable, but at the expense of accuracy. To find a model to estimate individual LA accurately for grapevine plants of all genotypes, both measurements of L and W should be involved. The proposed linear model [LA = −0.465 + 0.914 (L × W)] was adopted for its accuracy: the highest coefficient of determination (> 0.98), the smallest mean square error, the smallest prediction sum of squares, and the reasonably close prediction sum of squares value to error sum of squares. To validate the LW model, an independent data set of 200 leaves coming from another genotype in 2011 was used. Correlation coefficients showed that there was a highly reliable relationships between predicted leaf area and the observed leaf area, giving an overestimation of 0.8% in the prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GLM:

general linear model

L:

leaf midvein length

LA:

individual leaf area

LW:

product leaf length and width

L:W:

length to width ratio or leaf shape

MSE:

mean square error

MSPR:

mean squared prediction error

OLA:

observed leaf area

PLA:

predicted leaf area

PRESS:

prediction sum of squares

r 2 :

coefficient of determination

SE:

standard errors

SSE:

error sum of squares

T:

tolerance values

VIF:

variance inflation factor

W:

maximum leaf width

References

  • Antunes W.C., Pompelli M.F., Carretero D.M., DaMatta F.M.: Allometric models for non-destructive leaf area estimation in coffea (Coffea arabica and Coffea canephora). — Ann. Appl. Biol. 153: 33–40, 2008.

    Article  Google Scholar 

  • Blanco F.F., Folegatti M.V.: Estimation of leaf area for greenhouse cucumber by linear measurements under salinity and grafting. — Sci. Agric. 62: 305–309, 2005.

    Article  Google Scholar 

  • Bland J.M., Altman D.G.: Statistical methods for assessing agreement between two methods of clinical measurement. — Lancet 1: 307–310, 1986.

    Article  CAS  PubMed  Google Scholar 

  • Confalonieri R., Foi M., Casa R. et al.: Development of an app for estimating leaf area index using a smartphone. Trueness and precision determination and comparison with other indirect methods. — Comput. Electron. Agr. 96: 67–74, 2013.

    Article  Google Scholar 

  • Cristofori V., Rouphael Y., Mendoza-de Gyves E., Bignami C.: A simple model for estimating leaf area of hazelnut from linear measurements. — Sci. Hortic.-Amsterdam 113: 221–225, 2007.

    Article  Google Scholar 

  • Cristofori V., Fallovo C., Mendoza-de Gyves E. et al.: Nondestructive, analogue model for leaf area estimation in persimmon (Diospyros kaki L.f.) based on leaf length and width measurement. — Eur. J. Hortic. Sci. 73: 216–221, 2008.

    Google Scholar 

  • Demirsoy H., Demirsoy L.: A validated leaf area prediction model for some cherry cultivars in Turkey. — Pak. J. Bot. 35: 361–367, 2003.

    Google Scholar 

  • Demirsoy H., Demirsoy L., Uzun S., Ersoy B.: Nondestructive leaf area estimation in peach. — Eur. J. Hortic. Sci. 69: 144–146, 2004.

    Google Scholar 

  • de Swart E.A.M., Groenwold R., Kanne H.J. et al.: Nondestructive estimation of leaf area for different plant ages and accessions of Capsicum annuum L. — J. Hortic. Sci. Biotech. 79: 764–770, 2004.

    Google Scholar 

  • Elsner E.A., Jubb Jr. G.L.: Leaf area estimation of Concord grape leaves from simple linear measurements. — Am. J. Enol. Viticult. 39: 95–97, 1988.

    Google Scholar 

  • Fallovo C., Cristofori V., Mendoza-de Gyves E. et al.: Leaf area estimation model for small fruits from linear measurements. — HortScience 43: 2263–2267, 2008.

    Google Scholar 

  • Fascella G., Maggiore P., Zizzo G.V. et al.: A simple and lowcost method for leaf area measurement in Euphorbia × lomi Thai hybrids. — Adv. Hort. Sci. 23: 57–60, 2009.

    Google Scholar 

  • Gao M., Heijden G.W.A.M., Vos J. et al.: Estimation of leaf area for large scale phenotyping and modeling of rose genotypes. — Sci. Hortic.-Amsterdam 138: 227–234, 2012.

    Article  Google Scholar 

  • Gill J.L.: Outliers, and influence in multiple regression. — J. Anim. Breed. Genet. 103: 161–175, 1986.

    Article  Google Scholar 

  • Giuffrida F., Rouphael Y., Toscano S. et al.: Simple model for nondestructive leaf area estimation in bedding plants. — Photosynthetica 49: 380–388, 2011.

    Article  Google Scholar 

  • Jiménez C.M., Díaz J.B.R.: A statistical model to estimate potential yields in peach before bloom. — J. Am. Soc. Hortic. Sci. 128: 297–301, 2003a.

    Google Scholar 

  • Jiménez C.M, Díaz J.B.R.: Statistical model estimates potential yields in pear cultivars ‘Blanquilla’ and ‘Conference’ before bloom. — J. Amer. Soc. Hort. Sci. 128: 452–457, 2003b.

    Google Scholar 

  • Lizaso J.I., Batchelor W.D., Westgate M.E.: A leaf area model to simulate cultivar-specific expansion and senescence of maize leaves. — Field Crop. Res. 80: 1–17, 2003.

    Article  Google Scholar 

  • Manivel L., Weaver R.J.: Biometric correlations between leaf area and length measurements of ‘Grenache’ grape leaves. — HortScience 9: 27–28, 1974.

    Google Scholar 

  • Marini R.P.: Estimating mean fruit weight and mean fruit value for apple trees: comparison of two sampling methods with the true mean. — J. Am. Soc. Hortic. Sci. 126: 503–510, 2001.

    Google Scholar 

  • Marquardt D.W.: Generalized inverse, ridge regression and biased linear estimation. — Technometrics 12: 591–612, 1970.

    Article  Google Scholar 

  • Marshall J.K.: Methods for leaf area measurement of large and small samples. — Photosynthetica 2: 41–7, 1968.

    Google Scholar 

  • Mazzini R.B., Ribeiro R.V., Pio R.M.: A simple and nondestructive model for individual leaf area estimation in citrus. — Fruits 65: 269–275, 2010.

    Article  Google Scholar 

  • Mendoza-de Gyves E., Rouphael Y., Cristofori V., Rosana Mira F.: A non-destructive, simple and accurate model for estimating the individual leaf area of kiwi (Actinidia deliciosa). — Fruits 62: 171–176, 2007.

    Article  Google Scholar 

  • Mendoza-de Gyves E., Cristofori V., Fallovo C. et al.: Accurate and rapid technique for leaf area measurement in medlar (Mespilus germanica L.). — Adv. Hort. Sci. 22: 223–226, 2008.

    Google Scholar 

  • Misle E., Kahlaoui B., Hachicha M., Alvarado P.: Leaf area estimation in muskmelon by allometry. — Photosynthetica 51: 613–620, 2013.

    Article  Google Scholar 

  • Montero F.J., de Juan J.A., Cuesta A., Brasa A.: Nondestructive methods to estimate leaf area in Vitis vinifera L. — HortScience 35: 696–698, 2000.

    Google Scholar 

  • Neter J., Kutner M.H., Nachtshein C.J., Wasserman W.: Applied Linear Regression - Models. 3rd Ed. Pp. 1408. Homewood III, Irwin 1996.

    Google Scholar 

  • Olfati J.A., Peyvast G.H., Shabani H., Nosratie-Rad Z.: An estimation of individual leaf area in cabbage and broccoli using non-destructive methods. — J. Agr. Sci. Tech. 12: 627–632, 2010.

    Google Scholar 

  • Pompelli M.F., Antunes W.C., Ferreira D.T.R.G. et al.: Allometric models for non-destructive leaf area estimation of Jatropha curcas. — Biomass Bioenerg. 36: 77–85, 2012.

    Article  Google Scholar 

  • Rana G., Katerji N., Introna M., Hammami A.: Microclimate and plant water relationship of the "overhead" table grape vineyard managed with three different covering techniques. — Sci. Hortic.-Amsterdam 102: 105–120, 2004.

    Article  Google Scholar 

  • Rivera C.M., Rouphael Y., Cardarelli M., Colla G.: A simple and accurate equation for estimating individual leaf area of eggplant from linear measurements. — Eur. J. Hortic. Sci. 72: 228–230, 2007.

    Google Scholar 

  • Robbins S.N., Pharr D.M.: Leaf area prediction models for cucumber from linear measurements. — HortScience 22: 1264–1266, 1987.

    Google Scholar 

  • Rouphael Y., Colla G.: Radiation and water use efficiencies of greenhouse zucchini squash in relation to different climate parameters. — Eur. J. Agron. 23: 183–194, 2005.

    Article  Google Scholar 

  • Rouphael Y., Colla G., Battistelli A. et al.: Yield, water requirement, nutrient uptake and fruit quality of zucchini squash grown in soil and closed soilless culture. — J. Hortic. Sci. Biotech. 79: 423–430, 2004.

    CAS  Google Scholar 

  • Rouphael Y., Colla G., Fanasca S., Karam F.: Leaf area estimation of sunflower leaves from simple linear measurements. — Photosynthetica 45: 306–308, 2007.

    Article  Google Scholar 

  • Rouphael Y., Mouneimne A.H., Ismail A. et al.: Modeling individual leaf area of rose (Rosa hybrida L.) based on leaf length and width measurement. — Photosynthetica 48: 9–15, 2010a.

    Article  Google Scholar 

  • Rouphael Y., Mouneimne A.H., Rivera C.M. et al.: Allometric models for non-destructive leaf area estimation in grafted and ungrafted watermelon (Citrillus lanatus Thunb.). — J. Food Agric. Environ. 8: 161–165, 2010b.

    Google Scholar 

  • Rouphael Y., Rivera C.M., Cardarelli M. et al.: Leaf area estimation from linear measurements in zucchini plants of different ages. — J. Hortic. Sci. Biotech. 81: 238–241, 2006.

    Google Scholar 

  • Salerno A., Rivera C.M., Rouphael Y. et al.: Leaf area estimation of radish from simple linear measurements. — Adv. Hort. Sci. 19: 213–215, 2005.

    Google Scholar 

  • Schultz H.R.: An empirical model for the simulation of leaf appearance and leaf area development of primary shoots of several grapevine (Vitis vinifera L.) canopy-systems. — Sci. Hortic.-Amsterdam 52: 179–200, 1992.

    Article  Google Scholar 

  • Sepúlveda G.R., Kliewer W.M.: Estimation of leaf area of two grapevine cultivars (Vitis vinifera L.) using laminae linear measurements and fresh weight. — Am. J. Enol. Viticult. 34: 221–226, 1983.

    Google Scholar 

  • Stoppani M.I., Wolf R., Francescangeli N., Martí H.R.: A nondestructive and rapid method for estimating leaf area of broccoli. — Adv. Hort. Sci. 17: 173–175, 2003.

    Google Scholar 

  • Tsialtas J.T., Maslaris N.: Leaf area estimation in a sugar beet cultivar by linear models. — Photosynthetica 43: 477–479, 2005.

    Article  Google Scholar 

  • Tsialtas J.T., Koundouras S., Zioziou E.: Leaf area estimation by simple measurements and evaluation of leaf area prediction models in cabernet-Sauvignon grapevine leaves. — Photosynthetica 46: 452–456, 2008.

    Article  Google Scholar 

  • Uzun S., Celik H.: Leaf area prediction models (Uzcelik-I) for different horticultural plants. — Turk. J. Agric. Forest. 23: 645–650, 1999.

    Google Scholar 

  • Walther B.A., Moore J.L.: The concepts of bias, precision and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance. — Ecography 28: 815–829, 2005.

    Article  Google Scholar 

  • Weisberg S.: Applied Linear Regression, 2nd Ed. Pp. 324. J. Wiley & Sons, Inc., New York 1985.

    Google Scholar 

  • Williams L., Martinson T.E.: Nondestructive leaf area estimation of ‘Niagara’ and ‘DeChaunac’ grapevines. — Sci. Hortic.-Amsterdam 98: 493–498, 2003.

    Article  Google Scholar 

  • Zhang L., Liu X.-S.: Non-destructive leaf-area estimation for Bergenia purpurascens across timberline ecotone, southeast Tibet. — Ann. Bot. Fenn. 47: 346–352, 2010.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. Rouphael or M. Gonnella.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buttaro, D., Rouphael, Y., Rivera, C.M. et al. Simple and accurate allometric model for leaf area estimation in Vitis vinifera L. genotypes. Photosynthetica 53, 342–348 (2015). https://doi.org/10.1007/s11099-015-0117-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-015-0117-2

Additional key words

Navigation