Skip to main content
Log in

Photosynthetic responses of wheat (Triticum aestivum L.) to combined effects of drought and exogenous methyl jasmonate

  • Original Papers
  • Published:
Photosynthetica

Abstract

Drought stress limits wheat growth and productivity. The response of wheat (Triticum aestivum L.) to different water supply conditions (well-watered and drought-stressed) and exogenous methyl jasmonate (MeJA; 0 and 0.25 μM) was studied. The application of MeJA enhanced wheat adaptability to drought stress by physiological and metabolic adjustments. Drought stress reduced net photosynthetic rate (P N), stomatal conductance (g s), transpiration rate (E), and water-use efficiency (WUE) in wheat. The application of exogenous MeJA decreased also g s and E, but stimulated WUE. Meanwhile, MeJA mitigated the decline of P N, g s, and WUE induced by drought stress and midday depression by 6–183%. Both drought stress and exogenous MeJA induced stomatal closure, which improved water status and delayed plant senescence. MeJA enhanced the activities of superoxide dismutase, peroxidase, catalase, and reduced malondialdehyde content. P N-PAR response curves showed that MeJA mitigated the decline of maximum P N, apparent quantum yield, and saturation irradiance, and the increase of compensation irradiance. Drought stress and exogenous MeJA increased dark respiration rate and showed an additive effect. These results indicated that 0.25 μM MeJA enhanced the photosynthesis under drought stress mainly by improving the water status and antioxidant capacity of wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AA:

ascorbic acid

ANOVA :

analysis of variance

CAT:

catalase

DS:

drought-stress treatment

DS+MJ:

drought stress plus 0.25 μM MeJA treatment

E :

transpiration rate

F M :

ANOVA of MeJA treatment

F W :

ANOVA of water treatment

F W×M :

ANOVA together with interactions between water and MeJA treatments

g s :

stomatal conductance

I c :

compensation irradiance

I s :

saturation irradiance

JA:

jasmonic acid

L T :

leaf temperature

MDA:

malondialdehyde

MeJA:

methyl jasmonate

MJ:

0.25 μM MeJA treatment

P max :

maximum net photosynthetic rate

P N :

net photosynthetic rate

POD:

peroxidase

R:

roots

R D :

dark respiration rate

ROS:

reactive oxygen species

S:

shoots

S1:

flag leaf stage

S2:

flowering stage

S3:

filling stage

S4:

ripening stage

SOD:

superoxide dismutase

WUE:

water-use efficiency

WW:

well watered plants

ψw :

leaf water potential

ϕ:

apparent quantum yield

References

  • Anjum, S.A., Wang, L., Farooq, M., Khan, I., Xue, L.: Methyl jasmonate-induced alteration in lipid peroxidation, antioxidative defence system and yield in soybean under drought. — J. Agron. Crop Sci. 197: 269–301, 2011.

    Google Scholar 

  • Avanci, N.C., Luche, D.D., Goldman, G.H., Goldman, M.H.S.: Jasmonates are phytohormones with multiple functions, including plant defense and reproduction. — Genet. Mol. Res. 9: 484–505, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Baly, E.C.: The kinetics of photosynthesis. — P. Roy. Soc. Lond. B Bio. 117: 218–239, 1935.

    Article  CAS  Google Scholar 

  • Bandurska, H., Stroiński, A., Kubiś, J.: The effect of jasmonic acid on the accumulation of ABA, proline and spermidine and its influence on membrane injury under water deficit in two barley genotypes. — Acta Physiol. Plant. 25: 279–285, 2003.

    Article  CAS  Google Scholar 

  • Beauchamp, C., Fridovich, I.: Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. — Anal. Biochem. 44: 276–286, 1971.

    Article  CAS  PubMed  Google Scholar 

  • Berlett, B.S., Stadtman, E.R.: Protein oxidation in aging, disease, and oxidative stress. — J. Biol. Chem. 272: 20313–20316, 1997.

    Article  CAS  PubMed  Google Scholar 

  • Berry, J., Bjorkman, O.: Photosynthetic response and adaptation to temperature in higher plants. — Annu. Rev. Plant Physiol. 31:491–543, 1980.

    Article  Google Scholar 

  • Bota, J., Medrano, H., Flexas, J.: Is photosynthesis limited by decreased Rubisco activity and RuBP content under progressive water stress? — New Phytol. 162: 671–681, 2004.

    Article  CAS  Google Scholar 

  • Boyer, J.S.: Plant productivity and environment. — Science 218: 443–448, 1982.

    Article  CAS  PubMed  Google Scholar 

  • Bradford, M.M.: A rapid sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976.

    Article  CAS  PubMed  Google Scholar 

  • Cakmak, I., Marschner, H.: Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase and glutathione reductase in bean leaves. — Plant Physiol. 98: 1222–1227, 1992.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cao, S.F., Zheng, Y.H., Wang, K.T., Jin, P., Rui, H.J.: Methyl jasmonate reduces chilling injury and enhances antioxidant enzyme activity in postharvest loquat fruit. — Food Chem. 115: 1458–1463, 2009.

    Article  CAS  Google Scholar 

  • Colom, M.R., Vazzana, C.: Photosynthesis and PSII functionality of drought-resistant and drought-sensitive weeping love-grass plants. — Environ. Exp. Bot. 49: 135–144, 2003.

    Article  CAS  Google Scholar 

  • Cornic, G.: Drought stress inhibits photosynthesis by decreasing stomatal aperture: not by affecting ATP synthesis. — Trends Plant Sci. 5: 187–188, 2000.

    Article  Google Scholar 

  • Dhindsa, R.S., Plumb-Dhindsa, P., Thorpe, T.A.: Leaf senescence: correlated with increase leaves of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase. — J. Exp. Bot. 32: 93–101, 1981.

    Article  CAS  Google Scholar 

  • Ding, C.K., Wang, C.Y., Gross, K.C., Smith, D.L.: Reduction of chilling injury and transcript accumulation of heat shock proteins in tomato fruit by methyl jasmonate and methyl salicylate. — Plant Sci. 161: 1153–1159, 2001.

    Article  CAS  Google Scholar 

  • Dizengremel, P., Gérant, D.: Interactions between ozone, climatic and nutritional factors on coniferous tree physiology. — Final Scientific Report, Synthesis Report, Contract EV 5V CT 93 0263, 1997.

  • Du, Y.L., Wang, Z.Y., Fan, J.W. et al.: Exogenous abscisic acid reduces water loss and improves antioxidant defence, desiccation tolerance and transpiration efficiency in two spring wheat cultivars subjected to a soil water deficit. — Funct. Plant Biol. 40: 494–506, 2013.

    Article  CAS  Google Scholar 

  • Egley, G.H., Paul, R.N., Vaughn, K.C., Duke, S.O.: Role of peroxidase in the development of water-impermeable seed coats in Sida spinosa L. — Planta 157: 224–232, 1983.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, N.K., Gupta, S., Kumar, A.: Exogenous cytokinin application increases cell membrane and chlorophyll stability in wheat (Triticum aestivum L.). — Cereal Res. Commun. 28: 287–291, 2000.

    CAS  Google Scholar 

  • Hu, Y.R., Maskey, S., Uhlenbrook, S.: Trends in temperature and rainfall extremes in the Yellow River source region, China. — Climatic Change 110: 403–429, 2012.

    Article  Google Scholar 

  • Ishida, A., Toma, T., Marjenah.: Limitation of leaf carbon gain by stomatal and photochemical processes in the top canopy of Macaranga conifera, a tropical pioneer tree. — Tree Physiol. 19: 467–473, 1999.

    Article  CAS  PubMed  Google Scholar 

  • Jubany-Marí, T., Prinsen, E., Munné-Bosch, S., Alegre, L.: The timing of methyl jasmonate, hydrogen peroxide and ascorbate accumulation during water deficit and subsequent recovery in the Mediterranean shrub Cistus albidus L. — Environ. Exp. Bot. 69: 47–55, 2010.

    Article  Google Scholar 

  • Kang, G.Z., Li, G.Z., Xu, W. et al.: Proteomics reveals the effects of salicylic acid on growth and tolerance to subsequent drought stress in wheat. — J. Proteome Res. 11: 6066–6079, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Li, L., Staden, J.V.: Effects of plant growth regulators on the antioxidant system in callus of two maize cultivars subjected to water stress. — Plant Growth Regul. 24: 55–66, 1998.

    Article  Google Scholar 

  • Liu, X., Chi, H., Yue, M., Zhang, X.F., Li, W.J., Jia, E.P.: The regulation of exogenous jasmonic acid on UV-B stress tolerance in wheat. — J. Plant Growth Regul. 31: 436–447, 2012.

    Article  CAS  Google Scholar 

  • Lu, C.M., Zhang, J.H.: Effects of water stress on photosynthesis, chlorophyll fluorescence and photoinhibition in wheat plants. — Aust. J. Plant. Physiol. 25: 883–892, 1998.

    Article  CAS  Google Scholar 

  • Ludlow, M.M., Muchow, R.C.: A critical evaluation of traits for improving crop yields in water-limited environments. — Adv. Agron. 43: 107–153, 1990.

    Article  Google Scholar 

  • Ma, C., Wang, Z.Q., Kong, B.B., Lin, T.B.: Exogenous trehalose differentially modulate antioxidant defense system in wheat callus during water deficit and subsequent recovery. — Plant Growth Regul. 70: 275–285, 2013.

    Article  CAS  Google Scholar 

  • Ma, Q.Q., Wang, W., Li, Y.H., Li, D.Q., Zou, Q.: Alleviation of photoinhibition in drought-stressed wheat (Triticum aestivum) by foliar-applied glycinebetaine. — J. Plant Physiol. 163: 165–175, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Ma, R., Zhang, M., Li, B. et al.: The effects of exogenous Ca2+ on endogenous polyamine levels and drought-resistant traits of spring wheat grown under arid conditions. — J. Arid Environ. 63: 177–190, 2005.

    Article  Google Scholar 

  • Mahouachi, J., Arbona, V., Gómez-Cadenas, A.: Hormonal changes in papaya seedlings subjected to progressive water stress and re-watering. — Plant Growth Regul. 53: 43–51, 2007.

    Article  CAS  Google Scholar 

  • Morgan, P.W.: Effects of abiotic stresses on plant hormone systems. — Plant Biol. 12: 113–146, 1990.

    Google Scholar 

  • Pons, T.L., Welschen, R.A.M.: Midday depression of net photosynthesis in the tropical rainforest tree Eperua grandiflora: contributions of stomatal and internal conductances, respiration and Rubisco functioning. — Tree Physiol. 23: 937–947, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Suhita, D., Raghavendra, J., Kwak, J.M., Vavasseur, A.: Cytoplasmic alkalinization precedes reactive oxygen species production during methyl jasmonate- and abscisic acidinduced stomatal closure. — Plant Physiol. 134: 1536–1545, 2004.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tsonev, T.D., Lazova, G.N., Stoinova, Z.G., Popova, L.P.: A possible role for jasmonic acid in adaptation of barley seedlings to salinity stress. — J. Plant Growth Regul. 17:153–159, 1998.

    Article  CAS  Google Scholar 

  • Wahid, A., Rasul, E.: Photosynthesis in leaf, stem, flower and fruit. — In: M. Pessarakli (ed.): Handbook of Photosynthesis, 2nd edition. Pp.479–497. CRC Press, Boca Raton 2005.

    Google Scholar 

  • Wang, S.Y.: Methyl jasmonate reduces water stress in strawberry. — J. Plant Growth Regul. 18: 127–134, 1999.

    Article  PubMed  Google Scholar 

  • Wasternack, C.: Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and Development. — Ann. Bot.-London 100: 681–697, 2007.

    Article  CAS  Google Scholar 

  • Wu, H.L., Wu, X.L., Li, Z.H., Duan, L.S., Zhang, M.C.: Physiological evaluation of drought stress tolerance and recovery in cauliflower (Brassica oleracea L.) seedlings treated with methyl jasmonate and coronatine. — J. Plant Growth Regul. 31: 113–123, 2012.

    Article  CAS  Google Scholar 

  • Xia, L.Q., Ma, Y.Z., He, Y., Jones, H.D.: GM wheat development in China: current status and challenges to commercialization. — J. Exp. Bot. 63: 1785–1790, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Yin, C.Y., Berninger, F., Li, C.Y.: Photosynthetic responses of Populus przewalski subjected to drought stress. — Photosynthetica 44: 62–68, 2006.

    Article  Google Scholar 

  • Yokota, A., Kawasaki, S., Iwano, M. et al.: Citrulline and DRIP-1 protein (ArgE Homologue) in drought tolerance of wild watermelon. — Ann. Bot. 89: 825–832, 2002.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang, H., Wang, X., You, M., Liu, C.: Water-yield relations and water-use efficiency of winter wheat in the North China Plain. — Irrigation Sci. 19: 37–45, 1999.

    Article  CAS  Google Scholar 

  • Zheng, Y.X., Wu, J.C., Cao, F.L., Zhang, Y.P.: Effects of water stress on photosynthetic activity, dry mass partitioning and some associated metabolic changes in four provenances of neem (Azadirachta indica A. Juss). — Photosynthetica 48: 361–369, 2010.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. B. Lin.

Additional information

Acknowledgements: This research was supported National Natural Science Foundation of China (U1204314), National Science and Technology Support Program (2013BAC09B01) and Fund of Henan University of Science and Technology (09001814). We are grateful to Dr Zeyu Xin for constructive criticism and suggestions for this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, C., Wang, Z.Q., Zhang, L.T. et al. Photosynthetic responses of wheat (Triticum aestivum L.) to combined effects of drought and exogenous methyl jasmonate. Photosynthetica 52, 377–385 (2014). https://doi.org/10.1007/s11099-014-0041-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-014-0041-x

Additional key words

Navigation