Skip to main content

Advertisement

Log in

Conversion of Olmesartan to Olmesartan Medoxomil, A Prodrug that Improves Intestinal Absorption, Confers Substrate Recognition by OATP2B1

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Olmesartan medoxomil (olmesartan-MX), an ester-type prodrug of the angiotensin II receptor blocker (ARB) olmesartan, is predominantly anionic at intestinal pH. Human organic anion transporting polypeptide 2B1 (OATP2B1) is expressed in the small intestine and is involved in the absorption of various acidic drugs. This study was designed to test the hypothesis that OATP2B1-mediated uptake contributes to the enhanced intestinal absorption of olmesartan-MX, even though olmesartan itself is not a substrate of OATP2B1.

Methods

Tetracycline-inducible human OATP2B1- and rat Oatp2b1-overexpressing HEK 293 cell lines (hOATP2B1/T-REx-293 and rOatp2b1/T-REx-293, respectively) were established to characterize OATP2B1-mediated uptake. Rat jejunal permeability was measured using Ussing chambers. ARBs were quantified by liquid chromatography-tandem mass spectrometry.

Results

Significant olmesartan-MX uptake was observed in hOATP2B1/T-REx-293 and rOatp2b1/T-REx-293 cells, whereas olmesartan uptake was undetectable or much lower than olmesartan-MX uptake, respectively. Furthermore, olmesartan-MX exhibited several-fold higher uptake in Caco-2 cells and greater permeability in rat jejunum compared to olmesartan. Olmesartan-MX uptake in hOATP2B1/T-REx-293 cells and in Caco-2 cells was significantly decreased by OATP2B1 substrates/inhibitors such as 1 mM estrone-3-sulfate, 100 µM rifamycin SV, and 100 µM fluvastatin. Rat Oatp2b1-mediated uptake and rat jejunal permeability of olmesartan-MX were significantly decreased by 50 µM naringin, an OATP2B1 inhibitor. Oral administration of olmesartan-MX with 50 µM naringin to rats significantly reduced the area under the plasma concentration–time curve of olmesartan to 76.9%.

Conclusion

Olmesartan-MX is a substrate for OATP2B1, and the naringin-sensitive transport system contributes to the improved intestinal absorption of olmesartan-MX compared with its parent drug, olmesartan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

candesartan-CX:

Candesartan cilexetil

OATP/Oatp:

Organic anion transporting polypeptide

olmesartan-MX:

Olmesartan medoxomil

References

  1. Martinez MN, Amidon GL. A Mechanistic Approach to Understanding the Factors Affecting Drug Absorption: A Review of Fundamentals. J Clin Pharmacol. 2002;42:620–43.

    Article  CAS  PubMed  Google Scholar 

  2. Matsson P, Doak BC, Over B, Kihlberg J. Cell permeability beyond the rule of 5. Adv Drug Deliv Rev. 2016;101:42–61.

    Article  CAS  PubMed  Google Scholar 

  3. Doak BC, Over B, Giordanetto F, Kihlberg J. Oral druggable space beyond the rule of 5: Insights from drugs and clinical candidates. Chem Biol. 2014;21:1115–42.

    Article  CAS  PubMed  Google Scholar 

  4. Rautio J, Kumpulainen H, Heimbach T, Oliyai R, Oh D, Järvinen T, et al. Prodrugs: design and clinical applications. Nat Rev Drug Discov. 2008;7:255–70.

    Article  CAS  PubMed  Google Scholar 

  5. Waring MJ. Lipophilicity in drug discovery. Expert Opin Drug Discov. 2010;5:235–48.

    Article  CAS  PubMed  Google Scholar 

  6. Cundy KC, Branch R, Chernov-Rogan T, Dias T, Estrada T, Hold K, et al. XP13512 [(±)-1-([(α-isobutanoyloxyethoxy)carbonyl] aminomethyl)-1-cyclohexane acetic acid], a novel gabapentin prodrug: I. Design, synthesis, enzymatic conversion to gabapentin, and transport by intestinal solute transporters. J Pharmacol Exp Ther. 2004;311:315–23.

  7. Sugawara M, Huang W, Fei YJ, Leibach FH, Ganapathy V, Ganapathy ME. Transport of Valganciclovir, a Ganciclovir Prodrug, via Peptide Transporters PEPT1 and PEPT2. J Pharm Sci. 2000;89:781–9.

    Article  CAS  PubMed  Google Scholar 

  8. Epling D, Hu Y, Smith DE. Evaluating the intestinal and oral absorption of the prodrug valacyclovir in wildtype and huPepT1 transgenic mice. Biochem Pharmacol. 2018;155:1–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kato K, Shirasaka Y, Kuraoka E, Kikuchi A, Iguchi M, Suzuki H, et al. Intestinal absorption mechanism of tebipenem pivoxil, a novel oral carbapenem: involvement of human OATP family in apical membrane transport. Mol Pharm. 2010;7:1747–56.

    Article  CAS  PubMed  Google Scholar 

  10. Kobayashi D, Nozawa T, Imai K, Nezu JI, Tsuji A, Tamai I. Involvement of human organic anion transporting polypeptide OATP-B (SLC21A9) in pH-dependent transport across intestinal apical membrane. J Pharmacol Exp Ther. 2003;306:703–8.

    Article  CAS  PubMed  Google Scholar 

  11. Keiser M, Kaltheuner L, Wildberg C, Müller J, Grube M, Partecke LI, et al. The Organic Anion-Transporting Peptide 2B1 Is Localized in the Basolateral Membrane of the Human Jejunum and Caco-2 Monolayers. J Pharm Sci. 2017;106:2657–63.

    Article  CAS  PubMed  Google Scholar 

  12. Dresser GK, Bailey DG, Leake BF, Schwarz UI, Dawson PA, Freeman DJ, et al. Fruit juices inhibit organic anion transporting polypeptide-mediated drug uptake to decrease the oral availability of fexofenadine. Clin Pharmacol Ther. 2002;71:11–20.

    Article  CAS  PubMed  Google Scholar 

  13. Shirasaka Y, Shichiri M, Mori T, Nakanishi T, Tamai I. Major active components in grapefruit, orange, and apple juices responsible for OATP2B1-mediated drug interactions. J Pharm Sci. 2013;102:280–8.

    Article  CAS  PubMed  Google Scholar 

  14. Johnson M, Patel D, Matheny C, Ho M, Chen L, Ellens H. Inhibition of intestinal OATP2B1 by the calcium receptor antagonist ronacaleret results in a significant drug-drug interaction by causing a 2-fold decrease in exposure of rosuvastatin. Drug Metab Dispos. 2017;45:27–34.

    Article  CAS  PubMed  Google Scholar 

  15. Kondo A, Narumi K, Okuhara K, Takahashi Y, Furugen A, Kobayashi M, et al. Black tea extract and theaflavin derivatives affect the pharmacokinetics of rosuvastatin by modulating organic anion transporting polypeptide (OATP) 2B1 activity. Biopharm Drug Dispos. 2019;40:302–6.

    Article  CAS  PubMed  Google Scholar 

  16. Medwid S, Li MMJ, Knauer MJ, Lin K, Mansell SE, Schmerk CL, et al. Fexofenadine and rosuvastatin pharmacokinetics in mice with targeted disruption of organic anion transporting polypeptide 2b1. Drug Metab Dispos. 2019;47:832–42.

    Article  CAS  PubMed  Google Scholar 

  17. Chen M, Hu S, Li Y, Gibson AA, Fu Q, Baker SD, et al. Role of OATP2B1 in drug absorption and drug-drug interactions. Drug Metab Dispos. 2020;48:419–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Roth M, Obaidat A, Hagenbuch B. OATPs, OATs and OCTs: the organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. Br J Pharmacol. 2011;165:1260–87.

    Article  Google Scholar 

  19. Kinzi J, Grube M, Meyer zu Schwabedissen HE. OATP2B1 – The underrated member of the organic anion transporting polypeptide family of drug transporters? Biochem Pharmacol. 2021;188:114534. https://doi.org/10.1016/j.bcp.2021.114534.

  20. Lima LM, da Silva BNM, Barbosa G, Barreiro EJ. β-lactam antibiotics: An overview from a medicinal chemistry perspective. Eur J Med Chem. 2020;208: 112829.

    Article  CAS  PubMed  Google Scholar 

  21. Shah K, Gupta JK, Chauhan NS, Upmanyu N, Shrivastava SK, Mishra P. Prodrugs of NSAIDs: A Review. Open Med Chem J. 2017;11:146–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Piepho RW. Overview of the angiotensin-converting-enzyme inhibitors. Am J Health Syst Pharm. 2000;57:S3-7.

    Article  CAS  PubMed  Google Scholar 

  23. Michel MC, Foster C, Brunner HR, Liu L. A systematic comparison of the properties of clinically used angiotensin II type 1 receptor antagonists. Pharmacol Rev. 2013;65:809–48.

    Article  PubMed  Google Scholar 

  24. Ettmayer P, Amidon GL, Clement B, Testa B. Lessons Learned from Marketed and Investigational Prodrugs. J Med Chem. 2004;47:2393–404.

    Article  CAS  PubMed  Google Scholar 

  25. Najjar A, Karaman R. The prodrug approach in the era of drug design. Expert Opin Drug Deliv. 2019;16:1–5.

    Article  PubMed  Google Scholar 

  26. Stella VJ. Prodrugs: Some thoughts and current issues. J Pharm Sci. 2010;99:4755–65.

    Article  CAS  PubMed  Google Scholar 

  27. US Food and Drug Administration. Advancing Health Through Innovation: New Drug Therapy Approvals 2019 [cited 2023 Oct 20]. https://www.fda.gov/drugs/new-drugs-fda-cders-new-molecular-entities-and-new-therapeutic-biological-products/novel-drug-approvals-2019.

  28. US Food and Drug Administration. Advancing Health Through Innovation: New Drug Therapy Approvals 2020. [cited 2023 Oct 20]. https://www.fda.gov/drugs/new-drugs-fda-cders-new-molecular-entities-and-new-therapeutic-biological-products/novel-drug-approvals-2020.

  29. US Food and Drug Administration. Advancing Health Through Innovation: New Drug Therapy Approvals 2021 [cited 2023 Oct 20]. https://www.fda.gov/drugs/new-drugs-fda-cders-new-molecular-entities-and-new-therapeutic-biological-products/novel-drug-approvals-2021.

  30. US Food and Drug Administration. Advancing Health Through Innovation: New Drug Therapy Approcals 2022 [cited 2023 Oct 20]. https://www.fda.gov/drugs/new-drugs-fda-cders-new-molecular-entities-and-new-therapeutic-biological-products/novel-drug-approvals-2022.

  31. Bednarczyk D, Sanghvi MV. Organic anion transporting polypeptide 2B1 (OATP2B1), an expanded substrate profile, does it align with OATP2B1’s hypothesized function? Xenobiotica. 2020;50:1128–37.

    Article  CAS  PubMed  Google Scholar 

  32. Yamada A, Maeda K, Kamiyama E, Sugiyama D, Kondo T, Shiroyanagi Y, et al. Multiple human isoforms of drug transporters contribute to the hepatic and renal transport of olmesartan, a selective antagonist of the angiotensin II AT1-receptor. Drug Metab Dispos. 2007;35:2166–76.

    Article  CAS  PubMed  Google Scholar 

  33. Yanagisawa H, Koike H. Discovery of new AT1 receptor blocker Olmesartan Medoxomil. Medchem News. 2006;16:23–7.

    Google Scholar 

  34. Noguchi S, Nishimura T, Fujibayashi A, Maruyama T, Tomi M, Nakashima E. Organic Anion Transporter 4-Mediated Transport of Olmesartan at Basal Plasma Membrane of Human Placental Barrier. J Pharm Sci. 2015;104:3128–35.

    Article  CAS  PubMed  Google Scholar 

  35. Tamai I, Nezu JI, Uchino H, Sai Y, Oku A, Shimane M, et al. Molecular identification and characterization of novel members of the human organic anion transporter (OATP) family. Biochem Biophys Res Commun. 2000;273:251–60.

    Article  CAS  PubMed  Google Scholar 

  36. Roberts LM, Black DS, Raman C, Woodford K, Zhou M, Haggerty JE, et al. Subcellular localization of transporters along the rat blood-brain barrier and blood-cerebral-spinal fluid barrier by in vivo biotinylation. Neuroscience. 2008;155:423–38.

    Article  CAS  PubMed  Google Scholar 

  37. Noguchi S, Nishimura T, Mukaida S, Benet LZ, Nakashima E, Tomi M. Cellular Uptake of Levocetirizine by Organic Anion Transporter 4. J Pharm Sci. 2017;106:2895–8.

    Article  CAS  PubMed  Google Scholar 

  38. Nishimura T, Kato Y, Amano N, Ono M, Kubo Y, Kimura Y, et al. Species difference in intestinal absorption mechanism of etoposide and digoxin between cynomolgus monkey and rat. Pharm Res. 2008;25:2467–76.

    Article  CAS  PubMed  Google Scholar 

  39. Noguchi S, Okochi M, Atsuta H, Kimura R, Fukumoto A, Takahashi K, et al. Substrate recognition of renally eliminated angiotensin II receptor blockers by organic anion transporter 4. Drug Metab Pharmacokinet . 2021;36. https://doi.org/10.1016/j.dmpk.2020.10.002.

  40. Hoshino Y, Fujita D, Nakanishi T, Tamai I. Molecular localization and characterization of multiple binding sites of organic anion transporting polypeptide 2B1 (OATP2B1) as the mechanism for substrate and modulator dependent drug-drug interaction. Medchemcomm. 2016;7:1775–82.

    Article  CAS  Google Scholar 

  41. Lan T, Rao A, Haywood J, Davis CB, Han C, Garver E, et al. Interaction of macrolide antibiotics with intestinally expressed human and rat organic anion-transporting polypeptides. Drug Metab Dispos. 2009;37:2375–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shirasaka Y, Li Y, Shibue Y, Kuraoka E, Spahn-Langguth H, Kato Y, et al. Concentration-dependent effect of naringin on intestinal absorption of beta(1)-adrenoceptor antagonist talinolol mediated by p-glycoprotein and organic anion transporting polypeptide (Oatp). Pharm Res. 2009;26:560–7.

    Article  CAS  PubMed  Google Scholar 

  43. Hathout RM, Elshafeey AH. Development and characterization of colloidal soft nano-carriers for transdermal delivery and bioavailability enhancement of an angiotensin II receptor blocker. Eur J Pharm Biopharm. 2012;82:230–40.

    Article  CAS  PubMed  Google Scholar 

  44. Schwocho LR, Masonson HN. Pharmacokinetics of CS-866, a new angiotensin II receptor blocker, in healthy subjects. J Clin Pharmacol. 2001;41:515–27.

    Article  CAS  PubMed  Google Scholar 

  45. Shirasaka Y, Mori T, Murata Y, Nakanishi T, Tamai I. Substrate- and dose-dependent drug interactions with grapefruit juice caused by multiple binding sites on OATP2B1. Pharm Res. 2014;31:2035–43.

    Article  CAS  PubMed  Google Scholar 

  46. Varma MV, Rotter CJ, Chupka J, Whalen KM, Duignan DB, Feng B, et al. PH-sensitive interaction of HMG-CoA reductase inhibitors (statins) with organic anion transporting polypeptide 2B1. Mol Pharm. 2011;8:1303–13.

    Article  CAS  PubMed  Google Scholar 

  47. Unger MS, Mudunuru J, Schwab M, Hopf C, Drewes G, Nies AT, et al. Clinically Relevant OATP2B1 Inhibitors in Marketed Drug Space. Mol Pharm. 2020;17:488–98.

    CAS  PubMed  Google Scholar 

  48. Shirasaka Y, Mori T, Shichiri M, Nakanishi T, Tamai I. Functional pleiotropy of organic anion transporting polypeptide OATP2B1 due to multiple binding sites. Drug Metab Pharmacokinet. 2012;27:360–4.

    Article  CAS  PubMed  Google Scholar 

  49. Shirasaka Y, Kuraoka E, Spahn-Langguth H, Nakanishi T, Langguth P, Tamai I. Species difference in the effect of grapefruit juice on intestinal absorption of talinolol between human and rat. J Pharmacol Exp Ther. 2010;332:181–9.

    Article  CAS  PubMed  Google Scholar 

  50. Tourniaire F, Hassan M, André M, Ghiringhelli O, Alquier C, Amiot MJ. Molecular mechanisms of the naringin low uptake by intestinal Caco-2 cells. Mol Nutr Food Res. 2005;49:957–62.

    Article  CAS  PubMed  Google Scholar 

  51. Lindahl A, Sjöberg A, Bredberg U, Toreson H, Ungell AL, Lennernäs H. Regional intestinal absorption and biliary excretion of fluvastatin in the rat: possible involvement of mrp2. Mol Pharm. 2004;1:347–56.

    Article  CAS  PubMed  Google Scholar 

  52. Biganzoli E, Cavenaghi LA, Rossi R, Brunati MC, Nolli ML. Use of a Caco-2 cell culture model for the characterization of intestinal absorption of antibiotics. Il Farmaco. 1999;54:594–9.

    Article  CAS  PubMed  Google Scholar 

  53. Fardel O, Lecureur V, Loyer P, Guillouzo A. Rifampicin enhances anti-cancer drug accumulation and activity in multidrug-resistant cells. Biochem Pharmacol. 1995;49:1255–60.

    Article  CAS  PubMed  Google Scholar 

  54. Walters HC, Craddock AL, Fusegawa H, Willingham MC, Dawson PA. Expression, transport properties, and chromosomal location of organic anion transporter subtype 3. Am J Physiol Gastrointest Liver Physiol. 2000;279:42–6.

    Article  Google Scholar 

  55. Arakawa H, Shirasaka Y, Haga M, Nakanishi T, Tamai I. Active intestinal absorption of fluoroquinolone antibacterial agent ciprofloxacin by organic anion transporting polypeptide, Oatp1a5. Biopharm Drug Dispos. 2012;33:332–41.

    Article  CAS  PubMed  Google Scholar 

  56. Hanafy S, El-Kadi AOS, Jamali F. Effect of Inflammation on Molecular Targets and Drug Transporters. J Pharm Pharm Sci. 2012;15:361–75.

    Article  CAS  PubMed  Google Scholar 

  57. MacLean C, Moenning U, Reichel A, Fricker G. Regional absorption of fexofenadine in rat intestine. Eur J Pharm Sci. 2010;41:670–4.

    Article  CAS  PubMed  Google Scholar 

  58. Kang MJ, Kim HS, Jeon HS, Park JH, Lee BS, Ahn BK, et al. In situ intestinal permeability and in vivo absorption characteristics of olmesartan medoxomil in self-microemulsifying drug delivery system. Drug Dev Ind Pharm. 2012;38:587–96.

    Article  CAS  PubMed  Google Scholar 

  59. Shim C-K, Cheon E-P, Kang KW, Seo K-S, Han H-K. Inhibition effect of flavonoids on monocarboxylate transporter 1 (MCT1) in Caco-2 cells. J Pharm Pharmacol. 2010;59:1515–9.

    Article  Google Scholar 

  60. Wenzel U, Kuntz S, Diestel S, Daniel H. PEPT1-mediated cefixime uptake into human intestinal epithelial cells is increased by Ca2+ channel blockers. Antimicrob Agents Chemother. 2002;46:1375–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li X, Sun J, Guo Z, Zhong D, Chen X. Carboxylesterase 2 and intestine transporters contribute to the low bioavailability of allisartan, a prodrug of exp3174 for hypertension treatment in humans. Drug Metab Dispos. 2019;47:843–53.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported in part by JSPS KAKENHI grant numbers 18K06900, 21H02651, and 22K06750, as well as by JST SPRING, Grant Number JPMJSP2123 and AMED CREST, Grant Number JP20gm1310009. It was also funded in part by the Keio Gijuku Academic Development Fund, the Fukuzawa Memorial Fund, the Hoansha Foundation, and the Mochida Memorial Foundation for Medical and Pharmaceutical Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masatoshi Tomi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1.83 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukazawa, N., Nishimura, T., Orii, K. et al. Conversion of Olmesartan to Olmesartan Medoxomil, A Prodrug that Improves Intestinal Absorption, Confers Substrate Recognition by OATP2B1. Pharm Res (2024). https://doi.org/10.1007/s11095-024-03687-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-024-03687-1

Keywords

Navigation