Skip to main content
Log in

TIMP-1 Protects Tight Junctions of Brain Endothelial Cells From MMP-Mediated Degradation

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Objective

The blood–brain barrier (BBB) plays a critical role in central nervous system homeostasis, and the integrity of BBB is disrupted in many neurodegenerative diseases. Matrix metalloproteinases (MMPs) degrade the tight junctions (TJs) of endothelial cells and basement membrane components essential to BBB integrity, which leads to increased BBB permeability and allows inflammatory cells and neurotoxic substances to enter the brain. Tissue inhibitors of metalloproteinases (TIMPs), endogenous inhibitors of MMPs, regulate MMP activity, thereby maintaining BBB integrity.

Methods

The disruptive impacts of MMP-3 and MMP-9 on BBB and protective effect of TIMP-1 were investigated in a simplified in vitro model of the BBB, which was generated using rat brain microvascular endothelial cells (RBMEC). The main features of BBB formation, including permeability and the trans-endothelial electrical resistance (TEER), were monitored over time after the addition of MMP-3 and MMP-9 and their complexes with TIMP-1 inhibitor.

Results

Our results indicated that MMP-3 and MMP-9 caused a dose-dependent disruption of the BBB, with 1.5 µM MMPs resulting in an over threefold increase in permeability, while TIMP-1 inhibition protected the integrity of the BBB model and recovered TEER and permeability of RBMECs. The disruption and recovery of tight junction proteins of RBMECs after MMP and TIMP treatment were also detected using fluorescent microscopy.

Conclusion

MMP-9 and MMP-3 disrupt the BBB by degrading tight junctions in endothelial cells, and TIMP-1 could inhibit the disruptive effect of MMP-3 and MMP-9 by showing potential as therapeutic protein against MMP-related diseases where BBB disruption plays a role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information files. Should any raw data files be needed in another format they are available from the corresponding author upon reasonable request.

References

  1. Yong VW, Power C, Forsyth P, Edwards DR. Metalloproteinases in biology and pathology of the nervous system. Nat Rev Neurosci. 2001;2(7):502–11. https://doi.org/10.1038/35081571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cunningham LA, Wetzel M, Rosenberg GA. Multiple roles for MMPs and TIMPs in cerebral ischemia. Glia. 2005;50(4):329–39. https://doi.org/10.1002/glia.20169.

    Article  PubMed  Google Scholar 

  3. Raeeszadeh-Sarmazdeh M, Do LD, Hritz BG. Metalloproteinases and Their Inhibitors: Potential for the Development of New Therapeutics. Cells. 2020;9(5). https://doi.org/10.3390/cells9051313.

  4. Asahi M, Wang X, Mori T, Sumii T, Jung JC, Moskowitz MA, et al. Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood-brain barrier and white matter components after cerebral ischemia. J Neurosci. 2001;21(19):7724–32. https://doi.org/10.1523/JNEUROSCI.21-19-07724.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Harkness KA, Adamson P, Sussman JD, Davies-Jones GA, Greenwood J, Woodroofe MN. Dexamethasone regulation of matrix metalloproteinase expression in CNS vascular endothelium. Brain. 2000;123(Pt 4):698–709. https://doi.org/10.1093/brain/123.4.698.

    Article  PubMed  Google Scholar 

  6. Fukuda S, Fini CA, Mabuchi T, Koziol JA, Eggleston LL, del Zoppo GJ. Focal cerebral ischemia induces active proteases that degrade microvascular matrix. Stroke. 2004;35(4):998–1004. https://doi.org/10.1161/01.STR.0000119383.76447.05.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hamann GF, Okada Y, Fitridge R, del Zoppo GJ. Microvascular basal lamina antigens disappear during cerebral ischemia and reperfusion. Stroke. 1995;26(11):2120–6. https://doi.org/10.1161/01.str.26.11.2120.

    Article  CAS  PubMed  Google Scholar 

  8. Song LQ, Oseid DE, Wells EA, Coaston T, Robinson AS. Heparan Sulfate Proteoglycans (HSPGs) Serve as the Mediator Between Monomeric Tau and Its Subsequent Intracellular ERK1/2 Pathway Activation. J Mol Neurosci. 2022;72(4):772–91. https://doi.org/10.1007/s12031-021-01943-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gurney KJ, Estrada EY, Rosenberg GA. Blood-brain barrier disruption by stromelysin-1 facilitates neutrophil infiltration in neuroinflammation. Neurobiol Dis. 2006;23(1):87–96. https://doi.org/10.1016/j.nbd.2006.02.006.

    Article  CAS  PubMed  Google Scholar 

  10. Banks WA. Characteristics of compounds that cross the blood-brain barrier. BMC Neurol. 2009;9 Suppl 1(Suppl 1):3. https://doi.org/10.1186/1471-2377-9-S1-S3.

    Article  CAS  Google Scholar 

  11. Banks WA, Greig NH. Small molecules as central nervous system therapeutics: old challenges, new directions, and a philosophic divide. Future Med Chem. 2019;11(6):489–93. https://doi.org/10.4155/fmc-2018-0436.

    Article  CAS  PubMed  Google Scholar 

  12. Reese TS, Karnovsky MJ. Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol. 1967;34(1):207–17. https://doi.org/10.1083/jcb.34.1.207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Iwatake A, Murakami A, Ebihara N. The expression of matrix metalloproteinases and their inhibitors in corneal fibroblasts by alarmins from necrotic corneal epithelial cells. Jpn J Ophthalmol. 2018;62(1):92–100. https://doi.org/10.1007/s10384-017-0541-x.

    Article  CAS  PubMed  Google Scholar 

  14. Van Hove I, Lemmens K, Van de Velde S, Verslegers M, Moons L. Matrix metalloproteinase-3 in the central nervous system: a look on the bright side. J Neurochem. 2012;123(2):203–16. https://doi.org/10.1111/j.1471-4159.2012.07900.x.

    Article  CAS  PubMed  Google Scholar 

  15. Rosenberg GA. Matrix metalloproteinases and their multiple roles in neurodegenerative diseases. Lancet Neurol. 2009;8(2):205–16. https://doi.org/10.1016/S1474-4422(09)70016-X.

    Article  CAS  PubMed  Google Scholar 

  16. Rosenberg GA, Yang Y. Vasogenic edema due to tight junction disruption by matrix metalloproteinases in cerebral ischemia. Neurosurg Focus. 2007;22(5):E4. https://doi.org/10.3171/foc.2007.22.5.5.

    Article  PubMed  Google Scholar 

  17. Wang X, Jung J, Asahi M, Chwang W, Russo L, Moskowitz MA, et al. Effects of matrix metalloproteinase-9 gene knock-out on morphological and motor outcomes after traumatic brain injury. J Neurosci. 2000;20(18):7037–42. https://doi.org/10.1523/JNEUROSCI.20-18-07037.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Becker JW, Marcy AI, Rokosz LL, Axel MG, Burbaum JJ, Fitzgerald PM, et al. Stromelysin-1: three-dimensional structure of the inhibited catalytic domain and of the C-truncated proenzyme. Protein Sci. 1995;4(10):1966–76. https://doi.org/10.1002/pro.5560041002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nagase H, Woessner JF. Matrix metalloproteinases. J Biol Chem. 1999;274(31):21491–4. https://doi.org/10.1074/jbc.274.31.21491.

    Article  CAS  PubMed  Google Scholar 

  20. Baker AH, Edwards DR, Murphy G. Metalloproteinase inhibitors: biological actions and therapeutic opportunities. J Cell Sci. 2002;115(Pt 19):3719–27. https://doi.org/10.1242/jcs.00063.

    Article  CAS  PubMed  Google Scholar 

  21. Stetler-Stevenson WG. Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention. J Clin Invest. 1999;103(9):1237–41. https://doi.org/10.1172/JCI6870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dreymueller D, Pruessmeyer J, Groth E, Ludwig A. The role of ADAM-mediated shedding in vascular biology. Eur J Cell Biol. 2012;91(6–7):472–85. https://doi.org/10.1016/j.ejcb.2011.09.003.

    Article  CAS  PubMed  Google Scholar 

  23. Dreymueller D, Martin C, Kogel T, Pruessmeyer J, Hess FM, Horiuchi K, et al. Lung endothelial ADAM17 regulates the acute inflammatory response to lipopolysaccharide. EMBO Mol Med. 2012;4(5):412–23. https://doi.org/10.1002/emmm.201200217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brew K, Nagase H. The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. Biochim Biophys Acta. 2010;1803(1):55–71. https://doi.org/10.1016/j.bbamcr.2010.01.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Masciantonio MG, Lee CKS, Arpino V, Mehta S, Gill SE. The Balance Between Metalloproteinases and TIMPs: Critical Regulator of Microvascular Endothelial Cell Function in Health and Disease. Prog Mol Biol Transl Sci. 2017;147:101–31. https://doi.org/10.1016/bs.pmbts.2017.01.001.

    Article  CAS  PubMed  Google Scholar 

  26. Murphy G. Tissue inhibitors of metalloproteinases. Genome Biol. 2011;12(11):233. https://doi.org/10.1186/gb-2011-12-11-233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang Y, Estrada EY, Thompson JF, Liu W, Rosenberg GA. Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J Cereb Blood Flow Metab. 2007;27(4):697–709. https://doi.org/10.1038/sj.jcbfm.9600375.

    Article  CAS  PubMed  Google Scholar 

  28. Fujimoto M, Takagi Y, Aoki T, Hayase M, Marumo T, Gomi M, et al. Tissue inhibitor of metalloproteinases protect blood-brain barrier disruption in focal cerebral ischemia. J Cereb Blood Flow Metab. 2008;28(10):1674–85. https://doi.org/10.1038/jcbfm.2008.59.

    Article  CAS  PubMed  Google Scholar 

  29. Deli MA, Abrahám CS, Kataoka Y, Niwa M. Permeability studies on in vitro blood-brain barrier models: physiology, pathology, and pharmacology. Cell Mol Neurobiol. 2005;25(1):59–127. https://doi.org/10.1007/s10571-004-1377-8.

    Article  PubMed  Google Scholar 

  30. Abbott NJ, Dolman DE, Drndarski S, Fredriksson SM. An improved in vitro blood-brain barrier model: rat brain endothelial cells co-cultured with astrocytes. Methods Mol Biol. 2012;814:415–30. https://doi.org/10.1007/978-1-61779-452-0_28.

    Article  CAS  PubMed  Google Scholar 

  31. Srinivasan B, Kolli AR, Esch MB, Abaci HE, Shuler ML, Hickman JJ. TEER measurement techniques for in vitro barrier model systems. J Lab Autom. 2015;20(2):107–26. https://doi.org/10.1177/2211068214561025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Helms HC, Abbott NJ, Burek M, Cecchelli R, Couraud PO, Deli MA, et al. In vitro models of the blood-brain barrier: An overview of commonly used brain endothelial cell culture models and guidelines for their use. J Cereb Blood Flow Metab. 2016;36(5):862–90. https://doi.org/10.1177/0271678X16630991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Geldenhuys WJ, Mohammad AS, Adkins CE, Lockman PR. Molecular determinants of blood-brain barrier permeation. Ther Deliv. 2015;6(8):961–71. https://doi.org/10.4155/tde.15.32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Daneman R, Prat A. The blood-brain barrier. Cold Spring Harb Perspect Biol. 2015;7(1):a020412. https://doi.org/10.1101/cshperspect.a020412.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Raeeszadeh-Sarmazdeh M, Coban M, Mahajan S, Hockla A, Sankaran B, Downey GP, et al. Engineering of tissue inhibitor of metalloproteinases TIMP-1 for fine discrimination between closely related stromelysins MMP-3 and MMP-10. J Biol Chem. 2022;298(3):101654. https://doi.org/10.1016/j.jbc.2022.101654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bolt AJ, Do LD, Raeeszadeh-Sarmazdeh M. Bacterial Expression and Purification of Human Matrix Metalloproteinase-3 using Affinity Chromatography. J Vis Exp. 2022(181). https://doi.org/10.3791/63263

  37. Raeeszadeh-Sarmazdeh M, Greene KA, Sankaran B, Downey GP, Radisky DC, Radisky ES. Directed evolution of the metalloproteinase inhibitor TIMP-1 reveals that its N- and C-terminal domains cooperate in matrix metalloproteinase recognition. J Biol Chem. 2019;294(24):9476–88. https://doi.org/10.1074/jbc.RA119.008321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Toumaian MR, Raeeszadeh-Sarmazdeh M. Engineering Tissue Inhibitors of Metalloproteinases Using Yeast Surface Display. Methods Mol Biol. 2022;2491:361–85. https://doi.org/10.1007/978-1-0716-2285-8_19.

    Article  PubMed  Google Scholar 

  39. Liu J, Jin X, Liu KJ, Liu W. Matrix metalloproteinase-2-mediated occludin degradation and caveolin-1-mediated claudin-5 redistribution contribute to blood-brain barrier damage in early ischemic stroke stage. J Neurosci. 2012;32(9):3044–57. https://doi.org/10.1523/JNEUROSCI.6409-11.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jones AR, Shusta EV. Blood-brain barrier transport of therapeutics via receptor-mediation. Pharm Res. 2007;24(9):1759–71. https://doi.org/10.1007/s11095-007-9379-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gumbleton M, Audus KL. Progress and limitations in the use of in vitro cell cultures to serve as a permeability screen for the blood-brain barrier. J Pharm Sci. 2001;90(11):1681–98. https://doi.org/10.1002/jps.1119.

    Article  CAS  PubMed  Google Scholar 

  42. Reichel A, Begley DJ, Abbott NJ. An overview of in vitro techniques for blood-brain barrier studies. Methods Mol Med. 2003;89:307–24. https://doi.org/10.1385/1-59259-419-0:307.

    Article  CAS  PubMed  Google Scholar 

  43. Gaillard PJ, de Boer AG. Relationship between permeability status of the blood-brain barrier and in vitro permeability coefficient of a drug. Eur J Pharm Sci. 2000;12(2):95–102. https://doi.org/10.1016/s0928-0987(00)00152-4.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang Q, Zheng M, Betancourt CE, Liu L, Sitikov A, Sladojevic N, et al. Increase in Blood-Brain Barrier (BBB) Permeability Is Regulated by MMP3 via the ERK Signaling Pathway. Oxid Med Cell Longev. 2021;2021:6655122. https://doi.org/10.1155/2021/6655122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gomis-Ruth FX, Maskos K, Betz M, Bergner A, Huber R, Suzuki K, et al. Mechanism of inhibition of the human matrix metalloproteinase stromelysin-1 by TIMP-1. Nature. 1997;389(6646):77–81. https://doi.org/10.1038/37995.

    Article  CAS  PubMed  Google Scholar 

  46. Brilha S, Ong CWM, Weksler B, Romero N, Couraud PO, Friedland JS. Matrix metalloproteinase-9 activity and a downregulated Hedgehog pathway impair blood-brain barrier function in an in vitro model of CNS tuberculosis. Sci Rep. 2017;7(1):16031. https://doi.org/10.1038/s41598-017-16250-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nguyen JH, Yamamoto S, Steers J, Sevlever D, Lin W, Shimojima N, et al. Matrix metalloproteinase-9 contributes to brain extravasation and edema in fulminant hepatic failure mice. J Hepatol. 2006;44(6):1105–14. https://doi.org/10.1016/j.jhep.2005.09.019.

    Article  CAS  PubMed  Google Scholar 

  48. Salah MM, Abdelmawla MA, Eid SR, Hasanin RM, Mostafa EA, Abdelhameed MW. Role of Matrix Metalloproteinase-9 in Neonatal Hypoxic-Ischemic Encephalopathy. Open Access Maced J Med Sci. 2019;7(13):2114–8. https://doi.org/10.3889/oamjms.2019.618.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Liu X, Su P, Meng S, Aschner M, Cao Y, Luo W, et al. Role of matrix metalloproteinase-2/9 (MMP2/9) in lead-induced changes in an. Int J Biol Sci. 2017;13(11):1351–60. https://doi.org/10.7150/ijbs.20670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tang J, Kang Y, Huang L, Wu L, Peng Y. TIMP1 preserves the blood-brain barrier through interacting with CD63/integrin. Acta Pharm Sin B. 2020;10(6):987–1003. https://doi.org/10.1016/j.apsb.2020.02.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lakhan SE, Kirchgessner A, Tepper D, Leonard A. Matrix metalloproteinases and blood-brain barrier disruption in acute ischemic stroke. Front Neurol. 2013;4:32. https://doi.org/10.3389/fneur.2013.00032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hyatt AD, Eaton BT. Virological applications of the grid-cell-culture technique. Electron Microsc Rev. 1990;3(1):1–27. https://doi.org/10.1016/0892-0354(90)90011-g.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Huber JD, Egleton RD, Davis TP. Molecular physiology and pathophysiology of tight junctions in the blood-brain barrier. Trends Neurosci. 2001;24(12):719–25. https://doi.org/10.1016/s0166-2236(00)02004-x.

    Article  CAS  PubMed  Google Scholar 

  54. Prime SS, Nixon SV, Crane IJ, Stone A, Matthews JB, Maitland NJ, et al. The behaviour of human oral squamous cell carcinoma in cell culture. J Pathol. 1990;160(3):259–69. https://doi.org/10.1002/path.1711600313.

    Article  CAS  PubMed  Google Scholar 

  55. Shin K, Margolis B. ZOning out tight junctions. Cell. 2006;126(4):647–9. https://doi.org/10.1016/j.cell.2006.08.005.

    Article  CAS  PubMed  Google Scholar 

  56. Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev. 2005;57(2):173–85. https://doi.org/10.1124/pr.57.2.4.

    Article  CAS  PubMed  Google Scholar 

  57. Obermeier B, Daneman R, Ransohoff RM. Development, maintenance and disruption of the blood-brain barrier. Nat Med. 2013;19(12):1584–96. https://doi.org/10.1038/nm.3407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nakagawa S, Deli MA, Kawaguchi H, Shimizudani T, Shimono T, Kittel A, et al. A new blood-brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem Int. 2009;54(3–4):253–63. https://doi.org/10.1016/j.neuint.2008.12.002.

    Article  CAS  PubMed  Google Scholar 

  59. Calabria AR, Weidenfeller C, Jones AR, de Vries HE, Shusta EV. Puromycin-purified rat brain microvascular endothelial cell cultures exhibit improved barrier properties in response to glucocorticoid induction. J Neurochem. 2006;97(4):922–33. https://doi.org/10.1111/j.1471-4159.2006.03793.x.

    Article  CAS  PubMed  Google Scholar 

  60. Cardoso FL, Kittel A, Veszelka S, Palmela I, Tóth A, Brites D, et al. Exposure to lipopolysaccharide and/or unconjugated bilirubin impair the integrity and function of brain microvascular endothelial cells. PLoS One. 2012;7(5):e35919. https://doi.org/10.1371/journal.pone.0035919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Veszelka S, Tóth A, Walter FR, Tóth AE, Gróf I, Mészáros M, et al. Comparison of a Rat Primary Cell-Based Blood-Brain Barrier Model With Epithelial and Brain Endothelial Cell Lines: Gene Expression and Drug Transport. Front Mol Neurosci. 2018;11:166. https://doi.org/10.3389/fnmol.2018.00166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Aday S, Cecchelli R, Hallier-Vanuxeem D, Dehouck MP, Ferreira L. Stem Cell-Based Human Blood-Brain Barrier Models for Drug Discovery and Delivery. Trends Biotechnol. 2016;34(5):382–93. https://doi.org/10.1016/j.tibtech.2016.01.001.

    Article  CAS  PubMed  Google Scholar 

  63. Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis. 2010;37(1):13–25. https://doi.org/10.1016/j.nbd.2009.07.030.

    Article  CAS  PubMed  Google Scholar 

  64. Zlokovic BV. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron. 2008;57(2):178–201. https://doi.org/10.1016/j.neuron.2008.01.003.

    Article  CAS  PubMed  Google Scholar 

  65. Molino Y, Jabès F, Lacassagne E, Gaudin N, Khrestchatisky M. Setting-up an in vitro model of rat blood-brain barrier (BBB): a focus on BBB impermeability and receptor-mediated transport. J Vis Exp. 2014;88:51278. https://doi.org/10.3791/51278.

    Article  CAS  Google Scholar 

  66. Díaz-Coránguez M, Segovia J, López-Ornelas A, Puerta-Guardo H, Ludert J, Chávez B, et al. Transmigration of neural stem cells across the blood brain barrier induced by glioma cells. PLoS One. 2013;8(4):e60655. https://doi.org/10.1371/journal.pone.0060655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yan XB, Zhao YF, Yang YM, Wang N, He BZ, Qiu XT. Impact of astrocyte and lymphocyte interactions on the blood-brain barrier in multiple sclerosis. Rev Neurol (Paris). 2019;175(6):396–402. https://doi.org/10.1016/j.neurol.2018.12.006.

    Article  PubMed  Google Scholar 

  68. Safa N, Pettigrew JH, Gauthier TJ, Melvin AT. Direct measurement of deubiquitinating enzyme activity in intact cells using a protease-resistant, cell-permeable, peptide-based reporter. Biochem Eng J. 2019;151:ARTN 107320. https://doi.org/10.1016/j.bej.2019.107320.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the UNR genomic center. The authors would also like to thank Dr. Robert Rendon for his help with confocal fluorescence microscopy and Dr. Eric Shusta for his scientific consultation on fluorescence microscopy in vitro BBB model.

Funding

M. R.-S. had funding support from NIH R03AG070511 and NIH R21HD109743.

Author information

Authors and Affiliations

Authors

Contributions

M. R.-S., conception; H. A. and J. A. L., performing the experiments; H. A, J. A. L., M. R.-S., data analysis, writing and editing the manuscript drafts. M. R.-S. funding and supervision.

Corresponding author

Correspondence to Maryam Raeeszadeh-Sarmazdeh.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

ESM 1

Supplemental Fig S1. Effect of MMP-3 and TIMP-1 alone or with each other’s and their buffer on permeability of RBMEC. MMP-3 disrupts the TJs of RBMEC leading to a nearly 25-fold increase over baseline permeability at 1.5 µM of MMP-3-cd. In the presence of 1.5 µM of both TIMP-1 and MMP-3cd, permeability is slightly over twice baseline. The 1.5 µM of MMP-3 and 1.5 µM of both TIMP-1 and MMP-3cd shown highest effect on RBMEC so we tried these amounts for rest of experiments. No significant effect of buffers or TIMP-1 alone on RBMEC permeability was observed. Experiment was performed in 24-well Transwells (Vc,t = 600 µl × Sb,t / Sa) (PNG 288 kb)

High resolution image (TIF 3150 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadighadykolaei, H., Lambert, J.A. & Raeeszadeh-Sarmazdeh, M. TIMP-1 Protects Tight Junctions of Brain Endothelial Cells From MMP-Mediated Degradation. Pharm Res 40, 2121–2131 (2023). https://doi.org/10.1007/s11095-023-03593-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-023-03593-y

Keywords

Navigation