Skip to main content
Log in

Control of Drug-Excipient Particle Attributes with Droplet Microfluidic-based Extractive Solidification Enables Improved Powder Rheology

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

A Correction to this article was published on 22 April 2022

This article has been updated

Abstract

Purpose

Industrial implementation of continuous oral solid dosage form manufacturing has been impeded by the poor powder flow properties of many active pharmaceutical ingredients (APIs). Microfluidic droplet-based particle synthesis is an emerging particle engineering technique that enables the production of neat or composite microparticles with precise control over key attributes that affect powder flowability, such as particle size distribution, particle morphology, composition, and the API’s polymorphic form. However, the powder properties of these microparticles have not been well-studied due to the limited mass throughputs of available platforms. In this work, we produce spherical API and API-composite microparticles at high mass throughputs, enabling characterization and comparison of the bulk powder flow properties of these materials and greater understanding of how particle-scale attributes correlate with powder rheology.

Methods

A multi-channel emulsification device and an extractive droplet-based method are harnessed to synthesize spherical API and API-excipient particles of artemether. As-received API and API crystallized in the absence of droplet confinement are used as control cases. Particle attributes are characterized for each material and correlated with a comprehensive series of powder rheology tests.

Results

The droplet-based processed artemether particles are observed to be more flowable, less cohesive, and less compressible than conventionally synthesized artemether powder. Co-processing the API with polycaprolactone to produce composite microparticles reduces the friction of the powder on stainless steel, a common equipment material.

Conclusions

Droplet-based extractive solidification is an attractive particle engineering technique for improving powder processing and may aid in the implementation of continuous solid dosage form manufacturing.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. Li H, Tang X, Pang JH, Wu X, Yeow EKL, Wu J, et al. Polysulfide anions as visible light photoredox catalysts for aryl cross-couplings. J Am Chem Soc. 2021;143(1):481–7. https://doi.org/10.1021/jacs.0c11968.

    Article  CAS  PubMed  Google Scholar 

  2. Sambiagio C, Noël T. Flow photochemistry: shine some light on those tubes! Trends Chem. 2020;2(2):92–106. https://doi.org/10.1016/j.trechm.2019.09.003.

    Article  CAS  Google Scholar 

  3. Porta R, Benaglia M, Puglisi A. Flow chemistry: recent developments in the synthesis of pharmaceutical products. Org Process Res Dev. 2016;20(1):2–25. https://doi.org/10.1021/acs.oprd.5b00325.

    Article  CAS  Google Scholar 

  4. Adamo A, Beingessner RL, Behnam M, Chen J, Jamison TF, Jensen KF, et al. On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system. Science. 2016;352(6281):61. https://doi.org/10.1126/science.aaf1337.

    Article  CAS  PubMed  Google Scholar 

  5. Domokos A, Nagy B, Szilágyi B, Marosi G, Nagy ZK. Integrated continuous pharmaceutical technologies—a review. Org Process Res Dev. 2021. https://doi.org/10.1021/acs.oprd.0c00504.

    Article  Google Scholar 

  6. Schenck L, Koynov A, Cote A. Particle engineering at the drug substance, drug product interface: a comprehensive platform approach to enabling continuous drug substance to drug product processing with differentiated material properties. Drug Dev Ind Pharm. 2019;45(4):521–31. https://doi.org/10.1080/03639045.2018.1562467.

    Article  CAS  PubMed  Google Scholar 

  7. Chattoraj S, Sun CC. Crystal and particle engineering strategies for improving powder compression and flow properties to enable continuous tablet manufacturing by direct compression. J Pharm Sci. 2018;107(4):968–74. https://doi.org/10.1016/j.xphs.2017.11.023.

    Article  CAS  PubMed  Google Scholar 

  8. Govindarajan R, Suryanarayanan R. Processing-induced phase transformations and their implications on pharmaceutical product quality. Polymorphism. 2006:333–64. https://doi.org/10.1002/3527607889.ch13.

  9. Schaber SD, Gerogiorgis DI, Ramachandran R, Evans JMB, Barton PI, Trout BL. Economic analysis of integrated continuous and batch pharmaceutical manufacturing: a case study. Ind Eng Chem Res. 2011;50(17):10083–92. https://doi.org/10.1021/ie2006752.

    Article  CAS  Google Scholar 

  10. Domokos A, Nagy B, Gyurkes M, Farkas A, Tacsi K, Pataki H, et al. End-to-end continuous manufacturing of conventional compressed tablets: From flow synthesis to tableting through integrated crystallization and filtration. Int J Pharm. 2020;581:119297. https://doi.org/10.1016/j.ijpharm.2020.119297.

    Article  CAS  PubMed  Google Scholar 

  11. Vargas JM, Nielsen S, Cardenas V, Gonzalez A, Aymat EY, Almodovar E, et al. Process analytical technology in continuous manufacturing of a commercial pharmaceutical product. Int J Pharm. 2018;538(1–2):167–78. https://doi.org/10.1016/j.ijpharm.2018.01.003.

    Article  CAS  PubMed  Google Scholar 

  12. Waterman KC, Adami RC, Alsante KM, Antipas AS, Arenson DR, Carrier R, et al. Hydrolysis in pharmaceutical formulations. Pharm Dev Technol. 2002;7(2):113–46. https://doi.org/10.1081/PDT-120003494.

    Article  CAS  PubMed  Google Scholar 

  13. Carstensen JT. Effect of moisture on the stability of solid dosage forms. Drug Dev Ind Pharm. 1988;14(14):1927–69. https://doi.org/10.3109/03639048809151998.

    Article  CAS  Google Scholar 

  14. Shah UV, Karde V, Ghoroi C, Heng JYY. Influence of particle properties on powder bulk behaviour and processability. Int J Pharm. 2017;518(1–2):138–54. https://doi.org/10.1016/j.ijpharm.2016.12.045.

    Article  CAS  PubMed  Google Scholar 

  15. Chen H, Aburub A, Sun CC. Direct compression tablet containing 99% active ingredient-a tale of spherical crystallization. J Pharm Sci. 2019;108(4):1396–400. https://doi.org/10.1016/j.xphs.2018.11.015.

    Article  CAS  PubMed  Google Scholar 

  16. Goh HP, Heng PWS, Liew CV. Comparative evaluation of powder flow parameters with reference to particle size and shape. Int J Pharm. 2018;547(1–2):133–41. https://doi.org/10.1016/j.ijpharm.2018.05.059.

    Article  CAS  PubMed  Google Scholar 

  17. Dendukuri D, Doyle PS. The synthesis and assembly of polymeric microparticles using microfluidics. Adv Mater. 2009;21(41):4071–86. https://doi.org/10.1002/adma.200803386.

    Article  CAS  Google Scholar 

  18. Nelson AZ, Kundukad B, Wong WK, Khan SA, Doyle PS. Embedded droplet printing in yield-stress fluids. Proc Natl Acad Sci. 2020;117(11):5671. https://doi.org/10.1073/pnas.1919363117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yeap EWQ, Ng DZL, Prhashanna A, Somasundar A, Acevedo AJ, Xu Q, et al. Bottom-up structural design of crystalline drug-excipient composite microparticles via microfluidic droplet-based processing. Cryst Growth Des. 2017;17(6):3030–9. https://doi.org/10.1021/acs.cgd.6b01701.

    Article  CAS  Google Scholar 

  20. Yeap EWQ, Ng DZL, Lai D, Ertl DJ, Sharpe S, Khan SA. Continuous flow droplet-based crystallization platform for producing spherical drug microparticles. Org Process Res Dev. 2018;23(1):93–101. https://doi.org/10.1021/acs.oprd.8b00314.

    Article  CAS  Google Scholar 

  21. Leon RAL, Badruddoza AZM, Zheng L, Yeap EWQ, Toldy AI, Wong KY, et al. Highly selective, kinetically driven polymorphic selection in microfluidic emulsion-based crystallization and formulation. Cryst Growth Des. 2014;15(1):212–8. https://doi.org/10.1021/cg501222n.

    Article  CAS  Google Scholar 

  22. Yeap EWQ, Acevedo AJ, Khan SA. Microfluidic extractive crystallization for spherical drug/drug-excipient microparticle production. Org Process Res Dev. 2019;23(3):375–81. https://doi.org/10.1021/acs.oprd.8b00432.

    Article  CAS  Google Scholar 

  23. Erdemir D, Daftary V, Lindrud M, Buckley D, Lane G, Malsbury A, et al. Design and scale-up of a co-processing technology to improve powder properties of drug substances. Org Process Res Dev. 2019;23(12):2685–98. https://doi.org/10.1021/acs.oprd.9b00354.

    Article  CAS  Google Scholar 

  24. Rosenbaum T, Erdemir D, Chang SY, Kientzler D, Wang S, Chan SH, et al. A novel co-processing method to manufacture an API for extended release formulation via formation of agglomerates of active ingredient and hydroxypropyl methylcellulose during crystallization. Drug Dev Ind Pharm. 2018;44(10):1606–12. https://doi.org/10.1080/03639045.2018.1483386.

    Article  CAS  PubMed  Google Scholar 

  25. Erdemir D, Rosenbaum T, Chang S-Y, Wong B, Kientzler D, Wang S, et al. Novel co-processing methodology to enable direct compression of a poorly compressible, highly water-soluble active pharmaceutical ingredient for controlled release. Org Process Res Dev. 2018;22(10):1383–92. https://doi.org/10.1021/acs.oprd.8b00204.

    Article  CAS  Google Scholar 

  26. Schenck L, Erdemir D, Saunders Gorka L, Merritt JM, Marziano I, Ho R, et al. Recent advances in co-processed APIs and proposals for enabling commercialization of these transformative technologies. Mol Pharm. 2020;17(7):2232–44. https://doi.org/10.1021/acs.molpharmaceut.0c00198.

    Article  CAS  PubMed  Google Scholar 

  27. Nelson AZ, Xie J, Khan SA, Doyle PS. Continuous embedded droplet printing in yield-stress fluids for pharmaceutical drug particle synthesis. Advanced Materials Technologies. 2021;6(4):2001245. https://doi.org/10.1002/admt.202001245.

    Article  CAS  Google Scholar 

  28. Fortt R, Tona R, Martin-Soladana PM, Ward G, Lai D, Durrant J, et al. Extractive crystallization of cabotegravir in droplet-based microfluidic devices. J Cryst Growth. 2020;552:125908. https://doi.org/10.1016/j.jcrysgro.2020.125908.

    Article  CAS  Google Scholar 

  29. Nisisako T, Ando T, Hatsuzawa T. High-volume production of single and compound emulsions in a microfluidic parallelization arrangement coupled with coaxial annular world-to-chip interfaces. Lab Chip. 2012;12(18):3426–35. https://doi.org/10.1039/c2lc40245a.

    Article  CAS  PubMed  Google Scholar 

  30. Xu J, Singh V, Yin X, Singh P, Wu L, Xu X, et al. Solvents effects on crystallinity and dissolution of beta-artemether(). Drug Dev Ind Pharm. 2017;43(3):372–8. https://doi.org/10.1080/03639045.2016.1253728.

    Article  CAS  PubMed  Google Scholar 

  31. Udoh CE, Garbin V, Cabral JT. Microporous polymer particles via phase inversion in microfluidics: impact of nonsolvent quality. Langmuir. 2016;32(32):8131–40. https://doi.org/10.1021/acs.langmuir.6b01799.

    Article  CAS  PubMed  Google Scholar 

  32. Tu Y. Artemisinin—a gift from traditional Chinese medicine to the world (Nobel Lecture). Angew Chem Int Ed. 2016;55(35):10210–26. https://doi.org/10.1002/anie.201601967.

    Article  CAS  Google Scholar 

  33. World Health Organization: Model List of Essential Medicines. https://list.essentialmeds.org/ (2020). Accessed 29 June 2020.

  34. Arribas Bueno R, Crowley CM, Davern P, Hodnett BK, Hudson S. Heterogeneous crystallization of fenofibrate onto pharmaceutical excipients. Cryst Growth Des. 2018;18(4):2151–64. https://doi.org/10.1021/acs.cgd.7b01598.

    Article  CAS  Google Scholar 

  35. International Council For Harmonisation Of Technical Requirements For Pharmaceuticals for Human Use. IMPURITIES: GUIDELINE FOR RESIDUAL SOLVENTS Q3C(R8). https://database.ich.org/sites/default/files/ICH_Q3C-R8_Guideline_Step4_2021_0422_1.pdf (2021). Accessed 3 Dec 2021.

  36. Zhang Y, Liu QZ, Zhang DK, Jiang YB. Polymorphism, crystal structure and crystal habit of β-artemether. Huagong Xuebao/CIESC J. 2011;62:2958–63. https://doi.org/10.3969/j.issn.0438-1157.2011.10.040.

  37. Nair NR, Sekhar VC, Nampoothiri KM, Pandey A. 32 - Biodegradation of biopolymers. In: Pandey A, Negi S, Soccol CR, editors. Current developments in biotechnology and bioengineering. Elsevier; 2017. p. 739–55.

  38. Clancy D. 13 - Continuous secondary process selection and the modeling of batch and continuous wet granulation. In: Pandey P, Bharadwaj R, editors. Predictive modeling of pharmaceutical unit operations. Woodhead Publishing; 2017. p. 343–81.

  39. Schulze D. Flow properties of bulk solids. In: Schulze D, editor. Powders and bulk solids: behavior, characterization, storage and flow. Berlin, Heidelberg: Springer Berlin Heidelberg; 2008. p. 35–74.

    Google Scholar 

  40. Ketterhagen WR, Curtis JS, Wassgren CR, Hancock BC. Predicting the flow mode from hoppers using the discrete element method. Powder Technol. 2009;195(1):1–10. https://doi.org/10.1016/j.powtec.2009.05.002.

    Article  CAS  Google Scholar 

  41. Hansen DL, Tulinius D, Hansen EH. Adolescents’ struggles with swallowing tablets: barriers, strategies and learning. Pharm World Sci. 2007;30(1):65. https://doi.org/10.1007/s11096-007-9142-y.

    Article  PubMed  Google Scholar 

  42. Marconati M, Raut S, Burbidge A, Engmann J, Ramaioli M. An in vitro experiment to simulate how easy tablets are to swallow. Int J Pharm. 2018;535(1):27–37. https://doi.org/10.1016/j.ijpharm.2017.10.028.

    Article  CAS  PubMed  Google Scholar 

  43. Friedman M, Donbrow M. Fluidized bed coating technique for production of sustained release granules. Drug Dev Ind Pharm. 1978;4(4):319–31. https://doi.org/10.3109/03639047809060846.

    Article  CAS  Google Scholar 

  44. Yadavali S, Jeong H-H, Lee D, Issadore D. Silicon and glass very large scale microfluidic droplet integration for terascale generation of polymer microparticles. Nat Commun. 2018;9(1):1222. https://doi.org/10.1038/s41467-018-03515-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Ms. Ariel Chua from the National University of Singapore (Department of chemical engineering) for assistance with the characterization of particle size distributions of equant shaped artemether Raw and artemether Recrystallized samples and Dr. Rajeev Dattani from Freeman Technology for technical assistance on the aeration tests. The authors thank Longfei Chen and Dr. Swati Shikha for assistance on the characterisation of residual solvents levels of artemether PCL, artemether SA via 1H-NMR, and neat polycaprolactone particles via PXRD. The authors report no conflicts of interest.

Funding

This research was supported by the National Research Foundation, Prime Minister's Office, Singapore under its Campus for Research Excellence and Technological Enterprise program and GSK-EDB fund (R279-000–507-592). Financial support was also provided by the Pharmaceutical Innovation Programme Singapore (grant number A19B3a0012).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, and data collection were performed by D.Z.L.N. Data analysis was performed by D.Z.L.N and A.Z.N. The first draft of the manuscript was written by D.Z.L.N and A.Z.N. All authors commented on previous versions of the manuscript, read, and approved the final manuscript.

Corresponding authors

Correspondence to Patrick S. Doyle or Saif A. Khan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Both Patrick S. Doyle and Saif A. Khan are recipients of grant number [A19B3a0012].

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2.95 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ng, D.Z.L., Nelson, A.Z., Ward, G. et al. Control of Drug-Excipient Particle Attributes with Droplet Microfluidic-based Extractive Solidification Enables Improved Powder Rheology. Pharm Res 39, 411–421 (2022). https://doi.org/10.1007/s11095-021-03155-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-021-03155-0

KEY WORDS

Navigation