Skip to main content

Advertisement

Log in

Multiphysics Modeling and Simulation of Subcutaneous Injection and Absorption of Biotherapeutics: Model Development

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Many monoclonal antibodies (mAbs) are administered via subcutaneous (SC) injection. Local transport and absorption kinetics and mechanisms, however, remain poorly understood. A multiphysics computational model was developed to simulate the injection and absorption processes of a protein solution in the SC tissue.

Methods

Quantitative relationships among tissue properties and transport behaviors of an injected solution were described by respective physical laws. SC tissue was treated as a 3-dimensional homogenous, poroelastic medium, in which vasculatures and lymphatic vessels were implicitly treated. Tissue deformation was considered, and interstitial fluid flow was modeled by Darcy’s law. Transport of the drug mass was described based on diffusion and advection, which was integrated with tissue mechanics and interstitial fluid dynamics.

Results

Injection and absorption of albumin and IgG solutions were simulated. Upon injection, a sharp rise in tissue pressure, porosity, and fluid velocity could be observed at the injection tip. Largest tissue deformation appeared at the model surface. Transport of drug mass out of the injection zone was minimal. Absorption by local lymphatics was found to last several weeks.

Conclusions

A bottom-up method was developed to simulate drug transport and absorption of protein solutions in skin tissue base on physical principles. The results appear to match experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

ECM:

Extracellular matrix

FEM:

Finite element method

HSA:

Human serum albumin

IV:

Intravenous

mAbs:

Monoclonal antibodies

OD:

Outer diameter

PK:

Pharmacokinetic

SC:

Subcutaneous

References

  1. Elgundi Z, Reslan M, Cruz E, Sifniotis V, Kayser V. The state-of-play and future of antibody therapeutics. Adv Drug Deliv Rev. 2017;122:2–19.

    Article  CAS  PubMed  Google Scholar 

  2. Kaplon H, Muralidharan M, Schneider Z, Reichert JM. Antibodies to watch in 2020. MAbs. 2020;12(1):1703531.

    Article  PubMed  CAS  Google Scholar 

  3. Tachibana T, Kuwabara T. Antibody-based therapeutics. Drug Metabolism and Pharmacokinetics. 2019;34(1):1–2.

    Article  CAS  PubMed  Google Scholar 

  4. Ecker DM, Jones SD, Levine HL. The therapeutic monoclonal antibody market. MAbs. 2015;7(1):9–14.

    Article  CAS  PubMed  Google Scholar 

  5. The top selling prescription drugs by revenue. In. Pharmaceutical Technology. https://www.pharmaceutical-technology.com/features/top-selling-prescription-drugs/; 2019.

  6. Richter WF, Bhansali SG, Morris ME. Mechanistic determinants of biotherapeutics absorption following SC administration. AAPS J. 2012;14(3):559–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Viola M, Sequeira J, Seiça R, Veiga F, Serra J, Santos AC, et al. Subcutaneous delivery of monoclonal antibodies: how do we get there? J Control Release Off J Control Release Soc. 2018;286:301–14.

    Article  CAS  Google Scholar 

  8. Awwad S, Angkawinitwong U. Overview of antibody drug delivery. Pharmaceutics. 2018;10(3).

  9. McDowell A, Medlicott NJ. Anatomy and physiology of the injection site: implications for extended release parenteral systems. In: Wright JC, Burgess DJ, editors. Long acting injections and implants: Springer US; 2012. p. 57–71.

  10. Kansara V, Mitra A, Wu Y. Subcutaneous delivery of small molecule formulations: an insight into biopharmaceutics & formulation strategies. Drug Delivery Technology. 2009;9:38–43.

    CAS  Google Scholar 

  11. Turner MR, Balu-Iyer SV. Challenges and opportunities for the subcutaneous delivery of therapeutic proteins. J Pharm Sci. 2018;107(5):1247–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Papadmitriou K, Trinh XB, Altintas S, Van Dam PA, Huizing MT, Tjalma WAA. The socio-economical impact of intravenous (IV) versus subcutaneous (SC) administration of trastuzumab: future prospectives. Facts Views Vis Obgyn. 2015;7(3):176–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ashai NI, Paganini EP, Wilson JM. Intravenous versus subcutaneous dosing of epoetin: a review of the literature. Am J Kidney Dis. 1993;22(2 Suppl 1):23–31.

    Article  CAS  PubMed  Google Scholar 

  14. Patel TV, Robinson K, Singh AK. Is it time to reconsider subcutaneous administration of epoetin? Nephrol News Issues. 2007;21(11):57.

    PubMed  Google Scholar 

  15. Bittner B, Richter W, Schmidt J. Subcutaneous administration of biotherapeutics: an overview of current challenges and opportunities. BioDrugs. 2018;32(5):425–40.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Baert L, van 't Klooster G, Dries W, Francois M, Wouters A, Basstanie E, et al. Development of a long-acting injectable formulation with nanoparticles of rilpivirine (TMC278) for HIV treatment. European Journal of Pharmaceutics and Biopharmaceutics : Official Journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2009;72(3):502–8.

    Article  CAS  Google Scholar 

  17. Sconfienza LM, Perrone N, Lacelli F, Lentino C, Serafini G. Ultrasound-guided injection of botulinum toxin a in the treatment of iliopsoas spasticity. J Ultrasound. 2008;11(3):113–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tanioka T, Takase K, Yashuara Y, Zhao Y, Noda C, Hisashige S, Locsin R. Efficacy and safety in intramuscular injection techniques using ultrasonographic data. In. Health: Scientific Research Publishing; 2018. p 334–350.

  19. Kinnunen HM, Mrsny RJ. Improving the outcomes of biopharmaceutical delivery via the subcutaneous route by understanding the chemical, physical and physiological properties of the subcutaneous injection site. J Control Release Off J Control Release Soc. 2014;182:22–32.

    Article  CAS  Google Scholar 

  20. Porter CJH, Charman SA. Lymphatic transport of proteins after subcutaneous administration. J Pharm Sci. 2000;89(3):297–310.

    Article  CAS  PubMed  Google Scholar 

  21. Richter WF, Jacobsen B. Subcutaneous absorption of biotherapeutics: knowns and unknowns. Drug Metab Dispos Biol Fate Chem. 2014;42(11):1881–9.

    Article  PubMed  CAS  Google Scholar 

  22. Frost GI. Recombinant human hyaluronidase (rHuPH20): an enabling platform for subcutaneous drug and fluid administration. Expert Opin Drug Deliv. 2007;4(4):427–40.

    Article  CAS  PubMed  Google Scholar 

  23. Sequeira JAD, Santos AC, Serra J, Estevens C, Seiça R, Veiga F, et al. Subcutaneous delivery of biotherapeutics: challenges at the injection site. Expert Opin Drug Deliv. 2019;16(2):143–51.

    Article  CAS  PubMed  Google Scholar 

  24. Baxter LT, Jain RK. Transport of fluid and macromolecules in tumors. I. Role of interstitial pressure and convection. Microvasc Res. 1989;37(1):77–104.

    Article  CAS  PubMed  Google Scholar 

  25. Baxter LT, Jain RK. Transport of fluid and macromolecules in tumors. II. Role of heterogeneous perfusion and lymphatics. Microvasc Res. 1990;40(2):246–63.

    Article  CAS  PubMed  Google Scholar 

  26. Stapleton S, Milosevic M, Allen C, Zheng J, Dunne M, Yeung I, et al. A mathematical model of the enhanced permeability and retention effect for liposome transport in solid tumors. PLoS One. 2013;8(12):e81157.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Zhan W, Arifin DY, Lee TK, Wang CH. Mathematical modelling of convection enhanced delivery of carmustine and paclitaxel for brain tumour therapy. Pharm Res. 2017;34(4):860–73.

    Article  CAS  PubMed  Google Scholar 

  28. Penta R, Ambrosi D, Quarteroni A. Multiscale homogenization for fluid and drug transport in vascularized malignant tissues. Mathematical Models and Methods in Applied Sciences. 2015;25(01):79–108.

    Article  CAS  Google Scholar 

  29. Sefidgar M, Soltani M, Raahemifar K, Sadeghi M, Bazmara H, Bazargan M, et al. Numerical modeling of drug delivery in a dynamic solid tumor microvasculature. Microvasc Res. 2015;99:43–56.

    Article  CAS  PubMed  Google Scholar 

  30. Zhan W, Xu XY. A mathematical model for thermosensitive liposomal delivery of doxorubicin to solid tumour. J Drug Deliv. 2013;2013:172529.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhan W, Alamer M, Xu XY. Computational modelling of drug delivery to solid tumour: understanding the interplay between chemotherapeutics and biological system for optimised delivery systems. Adv Drug Deliv Rev. 2018;132:81–103.

    Article  CAS  PubMed  Google Scholar 

  32. Liu LJ, Schlesinger M. MRI contrast agent concentration and tumor interstitial fluid pressure. J Theor Biol. 2016;406:52–60.

    Article  CAS  PubMed  Google Scholar 

  33. Zhan W, Wang CH. Convection enhanced delivery of chemotherapeutic drugs into brain tumour. J Control Release Off J Control Release Soci. 2018;271:74–87.

    Article  CAS  Google Scholar 

  34. Yao W, Li Y, Ding G. Interstitial fluid flow: the mechanical environment of cells and foundation of meridians. Evid Based Complement Alternat Med. 2012;2012:853516.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Thomsen M, Hernandez-Garcia A, Mathiesen J, Poulsen M, Sørensen DN, Tarnow L, et al. Model study of the pressure build-up during subcutaneous injection. PLoS One. 2014;9(8):e104054.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Nedjar B. Formulation of a nonlinear porosity law for fully saturated porous media at finite strains. J Mech Phys Solids. 2013;61:537–56.

    Article  Google Scholar 

  37. Zhang H, Liu J, Elsworth D. How sorption-induced matrix deformation affects gas flow in coal seams: a new FE model. Int J Rock Mech Min Sci. 2008;45(8):1226–36.

    Article  Google Scholar 

  38. Detournay E, Cheng AHD. 5 - fundamentals of poroelasticity. In: Fairhurst C, editor. Analysis and design methods: Pergamon; 1993. p. 113–71.

  39. Hommel J, Coltman E, Class H. Porosity–permeability relations for evolving pore space: a review with a focus on (bio-)geochemically altered porous media. Transp Porous Media. 2018;124(2):589–629.

    Article  Google Scholar 

  40. Bear J. Dynamics of fluids in porous media: Dover Publications; 2013.

  41. Darcy H. Les fontaines publiques de la ville de Dijon: Exposition et application des principes à suivre et des formules à employer dans les questions de distribution d'eau : Ouvrage terminé par un appendice relatif aux fournitures d'eau de plusieurs villes, au filtrage des eaux et à la fabrication des tuyaux de fonte, de plomb, de tôle et de bitume: V. Dalmont; 1856.

  42. Song H. Engineering fluid mechanics: Singapore : springer Singapore : imprint: springer; 2018.

  43. Shrestha P, Stoeber B. Fluid absorption by skin tissue during intradermal injections through hollow microneedles. Sci Rep. 2018;8(1):13749.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Joodaki H, Panzer MB. Skin mechanical properties and modeling: a review. Proc Inst Mech Eng H J Eng Med. 2018;232(4):323–43.

    Article  Google Scholar 

  45. Gallagher AJ, Annaidh AN, Bruyère K et al. Dynamic tensile properties of human skin. In.: International Research Council on the Biomechanics of Injury; 2012.

  46. Støverud KH, Darcis M, Helmig R, Hassanizadeh SM. Modeling concentration distribution and deformation during convection-enhanced drug delivery into brain tissue. Transp Porous Media. 2012;92(1):119–43.

    Article  CAS  Google Scholar 

  47. Dokos S. Modelling organs, tissues, cells and devices: using MATLAB and COMSOL multiphysics: springer Berlin Heidelberg; 2017.

  48. Scallan J, Huxley VH, Korthuis RJ. Integrated systems physiology: from molecule to function to disease. In. Capillary fluid exchange: regulation, functions, and pathology. Morgan & Claypool Life Sciences; 2010.

  49. Yuan Y, Chilian WM, Granger HJ, Zawieja DC. Permeability to albumin in isolated coronary venules. Am J Phys Heart Circ Phys. 1993;265(2):H543–52.

    CAS  Google Scholar 

  50. Rippe B, Haraldsson B. Transport of macromolecules across microvascular walls: the two-pore theory. Physiol Rev. 1994;74(1):163–219.

    Article  CAS  PubMed  Google Scholar 

  51. Anderson OA, Jackson TL, Singh JK, Hussain AA, Marshall J. Human transscleral albumin permeability and the effect of topographical location and donor age. Invest Ophthalmol Vis Sci. 2008;49(9):4041–5.

    Article  PubMed  Google Scholar 

  52. COMSOL I. COMSOL Multiphysics Reference Manual, version 5.3a.

  53. Yeh G-T. On the computation of Darcian velocity and mass balance in the finite element modeling of groundwater flow. Water Resour Res. 1981;17(5):1529–34.

    Article  Google Scholar 

  54. Martin AD, Daniel MZ, Drinkwater DT, Clarys JP. Adipose tissue density, estimated adipose lipid fraction and whole body adiposity in male cadavers. Int J Obes Relat Metab Disord J Int Assoc Study Obes. 1994;18(2):79–83.

    CAS  Google Scholar 

  55. Thomas LW. The chemical composition of adipose tissue of man and mice. Q J Exp Physiol Cognate Med Sci. 1962;47(2):179–88.

    Article  CAS  Google Scholar 

  56. Nicholson C. Diffusion and related transport mechanisms in brain tissue. Rep Prog Phys. 2001;64(7):815–84.

    Article  CAS  Google Scholar 

  57. Jain RK. Transport of molecules in the tumor Interstitium: a review. Cancer Res. 1987;47(12):3039–51.

    CAS  PubMed  Google Scholar 

  58. Kim H, Park H, Lee SJ. Effective method for drug injection into subcutaneous tissue. Sci Rep. 2017;7(1):9613.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Comley K, Fleck N. Deep penetration and liquid injection into adipose tissue. J Mech Mater Struct. 2011;6:127–40.

    Article  Google Scholar 

  60. Wang W, Guo X, Shen G, Bai G, Wei Z, Liu J, et al. Skin and subcutaneous tissue thickness at insulin injection sites in Chinese diabetes patients: clinical implications. Diabetes Metab. 2016;42(5):374–7.

    Article  CAS  PubMed  Google Scholar 

  61. Gibney MA, Arce CH, Byron KJ, Hirsch LJ. Skin and subcutaneous adipose layer thickness in adults with diabetes at sites used for insulin injections: implications for needle length recommendations. Curr Med Res Opin. 2010;26(6):1519–30.

    Article  CAS  PubMed  Google Scholar 

  62. Huxley VH, Scallan J. Lymphatic fluid: exchange mechanisms and regulation. J Physiol. 2011;589(12):2935–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Goh Y-MF, Kong HL, Wang C-H. Simulation of the delivery of doxorubicin to Hepatoma. Pharm Res. 2001;18(6):761–70.

    Article  CAS  PubMed  Google Scholar 

  64. Rippe B, Kamiya A, Folkow B. Simultaneous measurements of capillary diffusion and filtration exchange during shifts in filtration-absorption and at graded alterations in the capillary permeability surface area products (PS). Acta Physiol Scand. 1978;104(3):318–36.

    Article  CAS  PubMed  Google Scholar 

  65. Shields JD, Borsetti M, Rigby H, Harper SJ, Mortimer PS, Levick JR, et al. Lymphatic density and metastatic spread in human malignant melanoma. Br J Cancer. 2004;90(3):693–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Platt AM, Randolph GJ. Chapter two - dendritic cell migration through the lymphatic vasculature to lymph nodes. In: Murphy KM, Merad M, editors. Advances in Immunology: Academic Press; 2013. p 51–68.

  67. Schaefer B, Bartosova M, Macher-Goeppinger S, Ujszaszi A, Wallwiener M, Nyarangi-Dix J, et al. Quantitative Histomorphometry of the healthy peritoneum. Sci Rep. 2016;6:21344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Spiegel M, Vesti B, Shore A, Franzeck UK, Becker F, Bollinger A. Pressure of lymphatic capillaries in human skin. Am J Phys Heart Circ Phys. 1992;262(4):H1208–10.

    CAS  Google Scholar 

  69. Olszewski WL, Jain P, Ambujam G, Zaleska M, Cakala M, Gradalski T. Tissue fluid pressure and flow in the subcutaneous tissue in lymphedema - hints for manual and pneumatic compression therapy. Phlebolymphology. 2010;17:144–50.

    Google Scholar 

  70. Li C, Guan G, Reif R, Huang Z, Wang RK. Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography. J R Soc Interface. 2012;9(70):831–41.

    Article  PubMed  Google Scholar 

  71. Rafsanjani A, Derome D, Carmeliet J. Poromechanical modeling of moisture induced swelling anisotropy in cellular tissues of softwoods. RSC Adv. 2015;5(5):3560–6.

    Article  CAS  Google Scholar 

  72. Dehghani H, Noll I, Penta R, Menzel A, Merodio J. The role of microscale solid matrix compressibility on the mechanical behaviour of poroelastic materials. Eur J Mech A Solids. 2020;83:103996.

    Article  Google Scholar 

  73. McLennan DN, Porter CJH, Charman SA. Subcutaneous drug delivery and the role of the lymphatics. Drug Discov Today Technol. 2005;2(1):89–96.

    Article  CAS  PubMed  Google Scholar 

  74. Supersaxo A, Hein WR, Steffen H. Effect of molecular weight on the lymphatic absorption of water-soluble compounds following subcutaneous administration. Pharm Res. 1990;7(2):167–9.

    Article  CAS  PubMed  Google Scholar 

  75. Scallan JP, Huxley VH. In vivo determination of collecting lymphatic vessel permeability to albumin: a role for lymphatics in exchange. J Physiol. 2010;588(Pt 1):243–54.

    Article  CAS  PubMed  Google Scholar 

  76. Karlsson D, Zacchi G, Axelsson A. Electronic speckle pattern interferometry: a tool for determining diffusion and partition coefficients for proteins in gels. Biotechnol Prog. 2002;18(6):1423–30.

    Article  CAS  PubMed  Google Scholar 

  77. Chary SR, Jain RK. Direct measurement of interstitial convection and diffusion of albumin in Normal and neoplastic tissues by fluorescence Photobleaching. Proc Natl Acad Sci U S A. 1989;86(14):5385–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Clauss MA, Jain RK. Interstitial transport of rabbit and sheep antibodies in normal and neoplastic tissues. Cancer Res. 1990;50(12):3487–92.

    CAS  PubMed  Google Scholar 

  79. Siflinger-Birnboim A, del Vecchio PJ, Cooper JA, Blumenstock FA, Shepard JM, Malik AB. Molecular sieving characteristics of the cultured endothelial monolayer. J Cell Physiol. 1987;132(1):111–7.

    Article  CAS  PubMed  Google Scholar 

  80. Zadro R, Pokric B, Pucar Z. Dependence of diffusion coefficients and immunoprecipitating titers on pH: human serum transferrin, immunoglobulin a, human chorionic somatomammotropin, and their rabbit antibodies. Anal Biochem. 1981;117(2):238–44.

    Article  CAS  PubMed  Google Scholar 

  81. Wasilewska M, Adamczyk Z, Pomorska A, Nattich-Rak M, Sadowska M. Human serum albumin adsorption kinetics on silica: influence of protein solution stability. Langmuir ACS J Surf Colloids. 2019;35(7):2639–48.

    Article  CAS  Google Scholar 

  82. Cannistraro S, Sacchetti F. Rotational and translational dynamics of human albumin. Phys Rev A. 1986;33(1):745–6.

    Article  CAS  Google Scholar 

  83. Monkos K. Temperature and concentration dependence of translational diffusion coefficient for human serum albumin in aqueous solutions at different pH. Ann Acad Med Silesiensis. 2013;67:184–93.

    CAS  Google Scholar 

  84. Aragon S, Hahn DK. Precise boundary element computation of protein transport properties: diffusion tensors, specific volume, and hydration. Biophys J. 2006;91(5):1591–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Charlwood PA. Sedimentation and diffusion of human albumins. I. Normal human albumins at a low concentration. Biochem J. 1952;51(1):113–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Oncley JL, Scatchard G, Brown A. Physical-chemical characteristics of certain of the proteins of normal human plasma. J Phys Colloid Chem. 1947;51(1):184–98.

    Article  CAS  PubMed  Google Scholar 

  87. Medda L, Monduzzi M, Salis A. The molecular motion of bovine serum albumin under physiological conditions is ion specific; 2015.

  88. Kihara T, Ito J, Miyake J. Measurement of biomolecular diffusion in extracellular matrix condensed by fibroblasts using fluorescence correlation spectroscopy. PLoS One. 2013;8(11):e82382.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Varghese LT, Sinha RK, Irudayaraj J. Study of binding and denaturation dynamics of IgG and anti-IgG using dual color fluorescence correlation spectroscopy. Anal Chim Acta. 2008;625(1):103–9.

    Article  CAS  PubMed  Google Scholar 

  90. Reitan NK, Juthajan A, Lindmo T, Davies CDL. Macromolecular diffusion in the extracellular matrix measured by fluorescence correlation spectroscopy: SPIE; 2008.

  91. Pokrić B, Pučar Z. The two-cross immunodiffusion technique: diffusion coefficients and precipitating titers of IgG in human serum and rabbit serum antibodies. Anal Biochem. 1979;93:103–14.

    Article  PubMed  Google Scholar 

  92. Jøssang T, Feder J, Rosenqvist E. Photon correlation spectroscopy of human IgG. J Protein Chem. 1988;7(2):165–71.

    Article  PubMed  Google Scholar 

  93. Saltzman WM, Radomsky ML, Whaley KJ, Cone RA. Antibody diffusion in human cervical mucus. Biophys J. 1994;66(2 Pt 1):508–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Brandt JP, Patapoff TW, Aragon SR. Construction, MD simulation, and hydrodynamic validation of an all-atom model of a monoclonal IgG antibody. Biophys J. 2010;99(3):905–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. el-Kareh AW, Braunstein SL, Secomb TW. Effect of cell arrangement and interstitial volume fraction on the diffusivity of monoclonal antibodies in tissue. Biophys J. 1993;64(5):1638–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Smith L, Andreasson S, Thoren-Tolling K, Rippe B, Risberg B. Sepsis in sheep reduces pulmonary microvascular sieving capacity. J Appl Physiol. 1987;62(4):1422–9.

    Article  CAS  PubMed  Google Scholar 

  97. Hollander W, Reilly P, Burrows BA. Lymphatic flow in human subjects as indicated by the disappearance of 1-131-labeled albumin from the subcutaneous tissue. J Clin Invest. 1961;40(2):222–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hays MT, McGuire RA. Distribution of subcutaneous thyroxine, triiodothyronine, and albumin in man: comparison with intravenous administration using a kinetic model. J Clin Endocrinol Metab. 1980;51(5):1112–7.

    Article  CAS  PubMed  Google Scholar 

  99. Pain SJ, Nicholas RS, Barber RW, Ballinger JR, Purushotham AD, Mortimer PS, et al. Quantification of lymphatic function for investigation of lymphedema: depot clearance and rate of appearance of soluble macromolecules in blood. J Nucl Med Off Publ Soc Nucl Med. 2002;43(3):318–24.

    Google Scholar 

  100. Stanton AW, Modi S, Mellor RH, Peters AM, Svensson WE, Levick JR, et al. A quantitative lymphoscintigraphic evaluation of lymphatic function in the swollen hands of women with lymphoedema following breast cancer treatment. Clinical science (London, England : 1979). 2006;110(5):553–61.

    Article  Google Scholar 

  101. Stanton AW, Svensson WE, Mellor RH, Peters AM, Levick JR, Mortimer PS. Differences in lymph drainage between swollen and non-swollen regions in arms with breast-cancer-related lymphoedema. Clinical science (London, England : 1979). 2001;101(2):131–40.

    Article  CAS  Google Scholar 

  102. Pain SJ, Barber RW, Ballinger JR, Solanki CK, Mortimer PS, Purushotham AD, et al. Local vascular access of radioprotein injected subcutaneously in healthy subjects and patients with breast cancer-related lymphedema. J Nucl Med Off Publ Soc Nucl Med. 2004;45(5):789–96.

    CAS  Google Scholar 

  103. Pain SJ, Barber RW, Solanki CK, Ballinger JR, Britton TB, Mortimer PS, et al. Short-term effects of axillary lymph node clearance surgery on lymphatic physiology of the arm in breast cancer. J Appl Physiol. 2005;99(6):2345–51.

    Article  PubMed  Google Scholar 

  104. O'Mahony S, Solanki CK, Barber RW, Mortimer PS, Purushotham AD, Peters AM. Imaging of lymphatic vessels in breast cancer-related lymphedema: intradermal versus subcutaneous injection of 99mTc-immunoglobulin. AJR Am J Roentgenol. 2006;186(5):1349–55.

    Article  PubMed  Google Scholar 

  105. Collins DS, Kourtis LC, Thyagarajapuram NR, Sirkar R, Kapur S, Harrison MW, et al. Optimizing the bioavailability of subcutaneously administered biotherapeutics through Mechanochemical drivers. Pharm Res. 2017;34(10):2000–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Nugent LJ, Jain RK. Plasma pharmacokinetics and interstitial diffusion of macromolecules in a capillary bed. Am J Phys Heart Circ Phys. 1984;246(1):H129–37.

    CAS  Google Scholar 

  107. Fox JR, Wayland H. Interstitial diffusion of macromolecules in the rat mesentery. Microvasc Res. 1979;18(2):255–76.

    Article  CAS  PubMed  Google Scholar 

  108. Berteau C, Filipe-Santos O, Wang T, Rojas HE, Granger C, Schwarzenbach F. Evaluation of the impact of viscosity, injection volume, and injection flow rate on subcutaneous injection tolerance. Med Devices (Auckl). 2015;8:473–84.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tonglei Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, F., Hou, P., Corpstein, C.D. et al. Multiphysics Modeling and Simulation of Subcutaneous Injection and Absorption of Biotherapeutics: Model Development. Pharm Res 38, 607–624 (2021). https://doi.org/10.1007/s11095-021-03032-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-021-03032-w

KEY WORDS

Navigation