Skip to main content
Log in

Absorption-Enhancing Mechanisms of Capryol 90, a Novel Absorption Enhancer, for Improving the Intestinal Absorption of Poorly Absorbed Drugs: Contributions to Trans- or Para-Cellular Pathways

  • RESEARCH PAPER
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

We have previously reported that Capryol 90 improves the intestinal absorption of insulin, a peptide drug, without causing serious damage to the intestinal epithelium. However, the effects of Capryol 90 and its related formulations on the intestinal absorption of other drugs, and their absorption-enhancing mechanisms are still unclear. The aim of this study is to evaluate the effects of Capryol 90 and its related formulations on the intestinal absorption of drugs and elucidate their absorption-enhancing mechanisms.

Methods

The intestinal absorption of 5(6)-carboxyfluorescein, fluorescein isothiocyanate-dextrans, and alendronate was evaluated using an in situ closed loop method. Brush border membrane vesicles (BBMVs) were labeled with fluorescent probes, and the fluidity of membrane was evaluated by a fluorescence depolarization method. The expression levels of tight junction (TJ) proteins were measured using a Western blot method and immunofluorescence staining.

Results

Among the tested excipients, Capryol 90 significantly improved the small and large intestinal absorption of drugs. In mechanistic studies, Capryol 90 increased the membrane fluidity of lipid bilayers in BBMVs. Additionally, Capryol 90 decreased the expression levels of TJ-associated proteins, namely claudin-4, occludin, and ZO-1.

Conclusions

Capryol 90 is an effective absorption enhancer for improving the intestinal absorption of poorly absorbed drugs via both transcellular and paracellular pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Drucker DJ. Advances in oral peptide therapeutics. Nat Rev Drug Discov. 2020;19(4):277–89.

    CAS  PubMed  Google Scholar 

  2. Kaur G, Arora M, Ravi Kumar MNV. Oral drug delivery technologies—a decade of developments. J Pharmacol Exp Ther. 2019;370(3):529–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Sachdeva S, Lobo S, Goswami T. What is the future of noninvasive routes for protein- and peptide-based drugs? Ther Deliv. 2016;7(6):355–7.

    CAS  PubMed  Google Scholar 

  4. Aguirre TAS, Teijeiro-Osorio D, Rosa M, Coulter IS, Alonso MJ, Brayden DJ. Current status of selected oral peptide technologies in advanced preclinical development and in clinical trials. Adv Drug Deliv Rev. 2016;106:223–41.

    CAS  PubMed  Google Scholar 

  5. Cao S jun, Xu S, Wang H ming, et al. Nanoparticles: Oral delivery for protein and peptide drugs. AAPS PharmSciTech. 2019;20(5):190.

  6. Maher S, Casettari L, Illum L. Transmucosal absorption enhancers in the drug delivery field. Pharmaceutics. 2019;11(7):339.

    CAS  PubMed Central  Google Scholar 

  7. Maher S, Mrsny RJ, Brayden DJ. Intestinal permeation enhancers for oral peptide delivery. Adv Drug Deliv Rev. 2016;106:277–319.

    CAS  PubMed  Google Scholar 

  8. Hu Z, Tawa R, Konishi T, Shibata N, Takada K. A novel emulsifier, Labrasol, enhances gastrointestinal absorption of gentamicin. Life Sci. 2001;69(24):2899–910.

    CAS  PubMed  Google Scholar 

  9. Prasad YVR, Minamimoto T, Yoshikawa Y, et al. In situ intestinal absorption studies on low molecular weight heparin in rats using Labrasol as absorption enhancer. Int J Pharm. 2004;271(1–2):225–32.

    Google Scholar 

  10. McCartney F, Jannin V, Chevrier S, Boulghobra H, Hristov DR, Ritter N, et al. Labrasol® is an efficacious intestinal permeation enhancer across rat intestine: ex vivo and in vivo rat studies. J Control Release. 2019;310:115–26.

    CAS  PubMed  Google Scholar 

  11. Ukai H, Iwasa K, Deguchi T, Morishita M, Katsumi H, Yamamoto A. Enhanced intestinal absorption of insulin by Capryol 90, a novel absorption enhancer in rats: implications in oral insulin delivery. Pharmaceutics. 2020;12(5):462.

    CAS  PubMed Central  Google Scholar 

  12. Ukai H, Kawagoe A, Sato E, Morishita M, Katsumi H, Yamamoto A. Propylene glycol caprylate as a novel potential absorption enhancer for improving the intestinal absorption of insulin: efficacy, safety, and absorption-enhancing mechanisms. J Pharm Sci. 2020;109(4):1483–92.

    CAS  PubMed  Google Scholar 

  13. Bhor VM, Sivakami S. Regional variations in intestinal brush border membrane fluidity and function during diabetes and the role of oxidative stress and non-enzymatic glycation. Mol Cell Biochem. 2003;252(1–2):125–32.

    CAS  PubMed  Google Scholar 

  14. Ganapathy V, Mendicino JF, Leibach FH. Transport of glycyl-L-proline into intestinal and renal brush border vesicles from rabbit. J Biol Chem. 1981;256(1):118–24.

    CAS  PubMed  Google Scholar 

  15. Prabhu R, Balasubramanian KA. A novel method of preparation of small intestinal brush border membrane vesicles by polyethylene glycol precipitation. Anal Biochem. 2001;289(2):157–61.

    CAS  PubMed  Google Scholar 

  16. Stiger B, Murer H. Heterogeneity of brush-border-membrane vesicles from rat small intestine prepared by a precipitation method using Mg/EGTA. Eur J Biochem. 1983;135(1):95–101.

    Google Scholar 

  17. Vázquez CM, Zanetti R, Ruiz-Gutierrez V. Lipid composition and fluidity in the jejunal brush-border membrane of spontaneously hypertensive rats. Effects on activities of membrane-bound proteins. Biosci Rep. 1996;16(3):217–26.

    PubMed  Google Scholar 

  18. Seth A, Sheth P, Elias BC, Rao R. Protein phosphatases 2A and 1 interact with occludin and negatively regulate the assembly of tight junctions in the CACO-2 cell monolayer. J Biol Chem. 2007;282(15):11487–98.

    CAS  PubMed  Google Scholar 

  19. Wong JA, Renton KW, Crocker JFS, O’Regan PA, Acott PD. Determination of pamidronate in human whole blood and urine by reversed-phase HPLC with fluorescence detection. Biomed Chromatogr. 2004;18(2):98–101.

    CAS  PubMed  Google Scholar 

  20. Drake MT, Clarke BL, Khosla S. Bisphosphonates: mechanism of action and role in clinical practice. Mayo Clin Proc. 2008;83(9):1032–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Eiken P, Vestergaard P. Treatment of osteoporosis after alendronate or risedronate. Osteoporos Int. 2016;27(1):1–12.

    CAS  PubMed  Google Scholar 

  22. Graham DY. What the gastroenterologist should know about the gastrointestinal safety profiles of bisphosphonates. Dig Dis Sci. 2002;47(8):1665–78.

    CAS  PubMed  Google Scholar 

  23. Naniwa T, Maeda T, Mizoshita T, Hayami Y, Watanabe M, Banno S, et al. Alendronate-induced esophagitis: possible pathogenic role of hypersensitivity to alendronate. Intern Med. 2008;47(23):2083–5.

    PubMed  Google Scholar 

  24. Yamamoto A, Taniguchi T, Rikyuu K, Tsuji T, Fujita T, Murakami M, et al. Effects of various protease inhibitors on the intestinal absorption and degradation of insulin in rats. Pharm Res. 1994;11(10):1496–500.

    CAS  PubMed  Google Scholar 

  25. Lin Y, Fujimori T, Kawaguchi N, Tsujimoto Y, Nishimi M, Dong Z, et al. Polyamidoamine dendrimers as novel potential absorption enhancers for improving the small intestinal absorption of poorly absorbable drugs in rats. J Control Release. 2011;149(1):21–8.

    CAS  PubMed  Google Scholar 

  26. Numata N, Takahashi K, Mizuno N, Utoguchi N, Watanabe Y, Matsumoto M, et al. Improvement of intestinal absorption of macromolecules by nitric oxide donor. J Pharm Sci. 2000;89(10):1296–304.

    CAS  PubMed  Google Scholar 

  27. Fetih G, Habib F, Okada N, Fujita T, Attia M, Yamamoto A. Nitric oxide donors can enhance the intestinal transport and absorption of insulin and [Asu1,7]-eel calcitonin in rats. J Control Release. 2005;106(3):287–97.

    CAS  PubMed  Google Scholar 

  28. Kajii H, Horie T, Hayashi M, Awazu S. Fluorescence study of the membrane-perturbing action of sodium caprylate as related to promotion of drug absorption. J Pharm Sci. 1988;77(5):390–2.

    CAS  PubMed  Google Scholar 

  29. Yoon BK, Jackman JA, Kim MC, Sut TN, Cho NJ. Correlating membrane morphological responses with micellar aggregation behavior of capric acid and monocaprin. Langmuir. 2017;33(11):2750–9.

    CAS  PubMed  Google Scholar 

  30. Li X, Uehara S, Sawangrat K, Morishita M, Kusamori K, Katsumi H, et al. Improvement of intestinal absorption of curcumin by cyclodextrins and the mechanisms underlying absorption enhancement. Int J Pharm. 2018;535(1–2):340–9.

    CAS  PubMed  Google Scholar 

  31. Sawangrat K, Yamashita S, Tanaka A, Morishita M, Kusamori K, Katsumi H, et al. Modulation of intestinal transport and absorption of topotecan, a BCRP substrate, by various pharmaceutical excipients and their inhibitory mechanisms of BCRP transporter. J Pharm Sci. 2019;108(3):1315–25.

    CAS  PubMed  Google Scholar 

  32. Yamashita S, Furubayashi T, Kataoka M, Sakane T, Sezaki H, Tokuda H. Optimized conditions for prediction of intestinal drug permeability using Caco-2 cells. Eur J Pharm Sci. 2000;10(3):195–204.

    CAS  PubMed  Google Scholar 

  33. Gumbiner BM. Breaking through the tight junction barrier. J Cell Biol. 1993;123(6 II):1631–3.

    CAS  PubMed  Google Scholar 

  34. Goodenough DA. Plugging the leaks. Proc Natl Acad Sci U S A. 1999;96(2):319–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Turner JR, Buschmann MM, Romero-Calvo I, Sailer A, Shen L. The role of molecular remodeling in differential regulation of tight junction permeability. Semin Cell Dev Biol. 2014;36:204–12.

    CAS  PubMed  Google Scholar 

  36. Morita K, Furuse M, Fujimoto K, Tsukita S. Claudin multigene family encoding four-transmembrane domain protein components of tight junction strands. Proc Natl Acad Sci U S A. 1999;96(2):511–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Rahner C, Mitic LL, Anderson JM. Heterogeneity in expression and subcellular localization of claudins 2, 3, 4, and 5 in the rat liver, pancreas, and gut. Gastroenterology. 2001;120(2):411–22.

    CAS  PubMed  Google Scholar 

  38. Furuse M, Hirase T, Itoh M, et al. Occludin: A novel integral membrane protein localizing at tight junctions. J Cell Biol. 1993;123(6 II):1777–88.

    CAS  PubMed  Google Scholar 

  39. Rao R. Occludin phosphorylation in regulation of epithelial tight junctions. Ann N Y Acad Sci. 2009;1165:62–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Tsukita S, Katsuno T, Yamazaki Y, Umeda K, Tamura A, Tsukita S. Roles of ZO-1 and ZO-2 in establishment of the belt-like adherens and tight junctions with paracellular permselective barrier function. Ann N Y Acad Sci. 2009;1165:44–52.

    CAS  PubMed  Google Scholar 

  41. Han X, Zhang E, Shi Y, Song B, Du H, Cao Z. Biomaterial-tight junction interaction and potential impacts. J Mater Chem B. 2019;7(41):6310–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Hsu LW, Lee PL, Chen CT, Mi FL, Juang JH, Hwang SM, et al. Elucidating the signaling mechanism of an epithelial tight-junction opening induced by chitosan. Biomaterials. 2012;33(26):6254–63.

    CAS  PubMed  Google Scholar 

  43. Tomita M, Hayashi M, Awazu S. Absorption-enhancing mechanism of EDTA, caprate, and decanoylcarnitine in Caco-2 cells. J Pharm Sci. 1996;85(6):608–11.

    CAS  PubMed  Google Scholar 

  44. González-Mariscal L, Tapia R, Chamorro D. Crosstalk of tight junction components with signaling pathways. Biochim Biophys Acta Biomembr. 2008;1778(3):729–56.

    Google Scholar 

  45. Chen T, Berenson J, Vescio R, Swift R, Gilchick A, Goodin S, et al. Pharmacokinetics and pharmacodynamics of zoledronic acid in cancer patients with bone metastases. J Clin Pharmacol. 2002;42(11):1228–36.

    CAS  PubMed  Google Scholar 

  46. Uludag H. Bisphosphonates as a foundation of drug delivery to bone. Curr Pharm Des. 2002;8(21):1929–44.

    CAS  PubMed  Google Scholar 

Download references

Declarations of Interest

None

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Yamamoto.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ukai, H., Imanishi, A., Kaneda, A. et al. Absorption-Enhancing Mechanisms of Capryol 90, a Novel Absorption Enhancer, for Improving the Intestinal Absorption of Poorly Absorbed Drugs: Contributions to Trans- or Para-Cellular Pathways. Pharm Res 37, 248 (2020). https://doi.org/10.1007/s11095-020-02963-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-020-02963-0

Key Words

Navigation