Skip to main content

Advertisement

Log in

Simplified Method to Determine the Efflux Ratio on P-Glycoprotein Substrates Using Three-Compartment Model Analysis for Caco-2 Cell Assay Data

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Multiple time-point sampling is required in transcellular transport studies to accurately calculate the appropriate efflux ratio (ER). Our study sought to develop a simplified method to determine the ER in Caco-2 cells.

Methods

The equation for the ER was derived from a three-compartment model of apical to basal and basal to apical transport. Transcellular transport studies were conducted with 10 non-P-glycoprotein (P-gp) and 6 P-gp substrates in Caco-2 cells, and the ER was calculated using this equation.

Results

The equation for the ER used the concentration ratio in the receiver compartment at the same time-point; therefore, the ER can theoretically be calculated using only a single point. The ER of all non-P-gp substrates tested was close to 1 at all sampling times. The ERs of cyclosporine A calculated from the concentration ratio at 30, 60, 90, and 120 min incubation were 2.93, 6.43, 7.12, and 9.57, respectively, and the ER at 120 min was almost identical to the theoretical value (9.62) calculated using three-compartment model analysis. The other 5 P-gp substrates showed a similar tendency. Single-point sampling can be used to accurately calculate ER at 120 min.

Conclusions

Single-point sampling is a promising approach for calculating appropriate ERs in the drug discovery stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AtoB:

Apical to basal

BCRP:

Breast cancer resistance protein

BSA:

Bovine serum albumin

BtoA:

Basal to apical

DMEM:

Dulbecco’s modified Eagle’s medium

DMSO:

Dimethyl sulfoxide

EMA:

European Medicines Agency

ER:

Efflux ratio

FaSSIF:

Fasted state simulated intestinal fluid

FBS:

Fetal bovine serum

FDA:

U.S. Food and Drug Administration

HBSS:

Hank’s balanced salt solution

HEPES:

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

Neaa:

MEM Non-essential amino acids solution

Papp:

Apparent permeability

P-gp:

P-glycoprotein

RMSD:

Root-mean square deviation

TEER:

Transepithelial electrical resistance

References

  1. Artursson P, Palm K, Luthman K. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv Drug Deliv Rev. 2001;46(1–3):27–43.

    Article  CAS  Google Scholar 

  2. Faassen F, Vogel G, Spanings H, Vromans H. Caco-2 permeability, P-glycoprotein transport ratios and brain penetration of heterocyclic drugs. Int J Pharm. 2003;263(1–2):113–22.

    Article  CAS  Google Scholar 

  3. Li J, Volpe DA, Wang Y, Zhang W, Bode C, Owen A, et al. Use of transporter knockdown Caco-2 cells to investigate the in vitro efflux of statin drugs. Drug metabolism and disposition: the biological fate of chemicals. 2011;39(7):1196–202.

    Article  CAS  Google Scholar 

  4. Volpe DA. Drug-permeability and transporter assays in Caco-2 and MDCK cell lines. Future Med Chem. 2011;3(16):2063–77.

    Article  CAS  Google Scholar 

  5. Hunter J, Jepson MA, Tsuruo T, Simmons NL, Hirst BH. Functional expression of P-glycoprotein in apical membranes of human intestinal Caco-2 cells. Kinetics of vinblastine secretion and interaction with modulators. J Biol Chem. 1993;268(20):14991–7.

    CAS  PubMed  Google Scholar 

  6. Tam D, Sun H, Pang KS. Influence of P-glycoprotein, transfer clearances, and drug binding on intestinal metabolism in Caco-2 cell monolayers or membrane preparations: a theoretical analysis. Drug metabolism and disposition: the biological fate of chemicals. 2003;31(10):1214–26.

    Article  CAS  Google Scholar 

  7. Varma MV, Sateesh K, Panchagnula R. Functional role of P-glycoprotein in limiting intestinal absorption of drugs: contribution of passive permeability to P-glycoprotein mediated efflux transport. Mol Pharm. 2005;2(1):12–21.

    Article  CAS  Google Scholar 

  8. Acharya P, Tran TT, Polli JW, Ayrton A, Ellens H, Bentz J. P-glycoprotein (P-gp) expressed in a confluent monolayer of hMDR1-MDCKII cells has more than one efflux pathway with cooperative binding sites. Biochemistry. 2006;45(51):15505–19.

    Article  CAS  Google Scholar 

  9. Avdeef A, Tam KY. How well can the Caco-2/Madin-Darby canine kidney models predict effective human jejunal permeability? J Med Chem. 2010;53(9):3566–84.

    Article  CAS  Google Scholar 

  10. Xia CQ, Liu N, Yang D, Miwa G, Gan LS. Expression, localization, and functional characteristics of breast cancer resistance protein in Caco-2 cells. Drug metabolism and disposition: the biological fate of chemicals. 2005;33(5):637–43.

    Article  CAS  Google Scholar 

  11. U.S. Food and Drug Administration. In Vitro metabolismand transportermediated drug-drug interaction studies guidance for industry. U.S. Food and Drug Administration. Available from: https://www.fda.gov/media/108130/download.

  12. Artursson P, Borchardt RT. Intestinal drug absorption and metabolism in cell cultures: Caco-2 and beyond. Pharm Res. 1997;14(12):1655–8.

    Article  CAS  Google Scholar 

  13. Bentz J, O'Connor MP, Bednarczyk D, Coleman J, Lee C, Palm J, Pak YA, Perloff ES, Reyner E, Balimane P, Brannstrom M, Chu X, Funk C, Guo A, Hanna I, Heredi-Szabo K, Hillgren K, Li L, Hollnack-Pusch E, Jamei M, Lin X, Mason AK, Neuhoff S, Patel A, Podila L, Plise E, Rajaraman G, Salphati L, Sands E, Taub ME, Taur JS, Weitz D, Wortelboer HM, Xia CQ, Xiao G, Yabut J, Yamagata T, Zhang L, Ellens H. Variability in P-glycoprotein inhibitory potency (IC50) using various in vitro experimental systems: implications for universal digoxin drug-drug interaction risk assessment decision criteria. Drug metabolism and disposition: the biological fate of chemicals. 2013;41(7):1347–1366.

    Article  CAS  Google Scholar 

  14. Suzuki. S, Shirasaka. Y, Okada. R, Eguchi. A, Kishimoto. H, Langguth. P, Inouea. K. Quantitative analysis of the effect of controlled-release formulation on nonlinear gastrointestinal absorption of P-glycoprotein substrate talinolol using physiologically based pharmacokinetic absorption model. Journal of Drug Delivery Science and Technology. 2019.

  15. Taparia S, Fleet JC, Peng JB, Wang XD, Wood RJ. 1,25-Dihydroxyvitamin D and 25-hydroxyvitamin D--mediated regulation of TRPV6 (a putative epithelial calcium channel) mRNA expression in Caco-2 cells. Eur J Nutr. 2006;45(4):196–204.

    Article  CAS  Google Scholar 

  16. Sun H, Chow EC, Liu S, Du Y, Pang KS. The Caco-2 cell monolayer: usefulness and limitations. Expert Opin Drug Metab Toxicol. 2008;4(4):395–411.

    Article  CAS  Google Scholar 

  17. European Medicines Agency. Guideline on the Investigation of Drug Interactions. European Medicines Agency. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2012/07/WC500129606.pdf.

  18. Balimane PV, Patel K, Marino A, Chong S. Utility of 96 well Caco-2 cell system for increased throughput of P-gp screening in drug discovery. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2004;58(1):99–105.

    Article  CAS  Google Scholar 

  19. Palumbo P, Picchini U, Beck B, van Gelder J, Delbar N, DeGaetano A. A general approach to the apparent permeability index. J Pharmacokinet Pharmacodyn. 2008;35(2):235–48.

    Article  Google Scholar 

  20. Sun H, Pang KS. Permeability, transport, and metabolism of solutes in Caco-2 cell monolayers: a theoretical study. Drug metabolism and disposition: the biological fate of chemicals. 2008;36(1):102–23.

    Article  CAS  Google Scholar 

  21. Tachibana T, Kitamura S, Kato M, Mitsui T, Shirasaka Y, Yamashita S, et al. Model analysis of the concentration-dependent permeability of P-gp substrates. Pharm Res. 2010;27(3):442–6.

    Article  CAS  Google Scholar 

  22. Korzekwa KR, Nagar S, Tucker J, Weiskircher EA, Bhoopathy S, Hidalgo IJ. Models to predict unbound intracellular drug concentrations in the presence of transporters. Drug metabolism and disposition: the biological fate of chemicals. 2012;40(5):865–76.

    Article  CAS  Google Scholar 

  23. Nagar S, Korzekwa K. Commentary: nonspecific protein binding versus membrane partitioning: it is not just semantics. Drug metabolism and disposition: the biological fate of chemicals. 2012;40(9):1649–52.

    Article  CAS  Google Scholar 

  24. Ozeki K, Kato M, Sakurai Y, Ishigai M, Kudo T, Ito K. Evaluation of the appropriate time range for estimating the apparent permeability coefficient (P(app)) in a transcellular transport study. Int J Pharm. 2015;495(2):963–71.

    Article  CAS  Google Scholar 

  25. Nagayasu M, Ozeki K, Onoue S. Three-compartment model analysis with minimal sampling points in the Caco-2 permeability assay. Biol Pharm Bull. 2019;42(9):1600–4.

    Article  CAS  Google Scholar 

  26. Kalvass JC, Pollack GM. Kinetic considerations for the quantitative assessment of efflux activity and inhibition: implications for understanding and predicting the effects of efflux inhibition. Pharm Res. 2007;24(2):265–76.

    Article  CAS  Google Scholar 

  27. Moyes SM, Morris JF, Carr KE. Culture conditions and treatments affect Caco-2 characteristics and particle uptake. Int J Pharm. 2010;387(1–2):7–18.

    Article  CAS  Google Scholar 

  28. Press B, Di Grandi D. Permeability for intestinal absorption: Caco-2 assay and related issues. Curr Drug Metab. 2008;9(9):893–900.

    Article  CAS  Google Scholar 

  29. Pang KS, Maeng HJ, Fan J. Interplay of transporters and enzymes in drug and metabolite processing. Mol Pharm. 2009;6(6):1734–55.

    Article  CAS  Google Scholar 

  30. Fan J, Maeng HJ, Pang KS. Interplay of transporters and enzymes in the Caco-2 cell monolayer: I. effect of altered apical secretion. Biopharm Drug Dispos. 2010;31(4):215–27.

    Article  CAS  Google Scholar 

  31. Pade V, Stavchansky S. Estimation of the relative contribution of the transcellular and paracellular pathway to the transport of passively absorbed drugs in the Caco-2 cell culture model. Pharm Res. 1997;14(9):1210–5.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Miho Nagayasu: Formal Analysis, Writing-Original draft preparation, Visualization. Kazuhisa Ozeki: Conceptualization, Methodology, Investigation, Project Administration. Yuuji Sakurai: Investigation, Data Curation. Haruka Tsutsui: Investigation. Satomi Onoue: Writing – Review & Editing, Supervision.

Corresponding author

Correspondence to Kazuhisa Ozeki.

Ethics declarations

Conflict of Interest

Miho Nagayasu, Kazuhisa Ozeki, Yuuji Sakurai, and Hruka Tsutsui are employee of Chugai Pharmaceutical Co.,Ltd. Some authors have owns stock in Chugai.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagayasu, M., Ozeki, K., Sakurai, Y. et al. Simplified Method to Determine the Efflux Ratio on P-Glycoprotein Substrates Using Three-Compartment Model Analysis for Caco-2 Cell Assay Data. Pharm Res 37, 13 (2020). https://doi.org/10.1007/s11095-019-2729-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-019-2729-x

Key words

Navigation