Skip to main content
Log in

Fabrication of TPGS-Stabilized Liposome-PLGA Hybrid Nanoparticle Via a New Modified Nanoprecipitation Approach: In Vitro and In Vivo Evaluation

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

In this study, a new modified nanoprecipitation approach that more efficient and simpler than conventional approach was developed to synthesize D-alpha-Tocopheryl polyethylene glycol 1000 succinate stabilized liposome-PLGA hybrid nanoparticle, loaded with simvastatin (ST-TLPN).

Methods

The optimum formulation was screened via investigation of the impact of TPGS mass within polymeric core and lipid shell on the physicochemical properties of nanoparticles respectively. FTIR, and drug release of ST-TLPN were also systematically determined. Finally, the cellular internalization was evaluated using the murine macrophage cell line, in vivo pharmacokinetic behavior and antiatherogenic efficacies were elaborately examined in atherosclerotic rabbit models.

Results

With the weight ratio of TPGS-to-PLGA in organic phase of 30% and TPGS-to-lipid in aqueous phase of 35%, ST-TLPN exhibited core-shell structure, sub-100 nm size, EE% of over 90% and a slow release profile. The excellent cellular uptake was displayed in RAW264.7 cell line. Improved pharmacokinetic behavior, and enhanced antiatherogenic efficacy of ST-TLPN in the model animals were also revealed compared with ST-loaded PLGA nanoparticles.

Conclusion

These findings suggest the modified nanoprecipitation method holds great potential for fabricating LPN, aided by the multiple functions of TPGS. And the prepared TLPN is a promising delivery system for use in the pharmaceutical field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

LPHN:

Lipid–polymer hybrid nanoparticle

LPN:

Liposome-PLGA hybrid nanoparticle

PLGA:

Polylactic-co-glycolic acid

PN :

Polymeric nanoparticles

ST :

Simvastatin

ST-TLPN :

Simvastatin-loaded TLPN

TPGS :

D-alpha-Tocopheryl polyethylene glycol 1000 succinate

TLPN :

TPGS-stabilized LPN

W TPGSo /W PLGA :

The weight ratio of TPGS to PLGA in the organic phase

W TPGSw /W Lipid :

The weight ratio of TPGS to lipid in the aqueous phase

References

  1. Duivenvoorden R, Tang J, Cormode DP, Mieszawska AJ, Izquierdogarcia D, Ozcan C, et al. A statin-loaded reconstituted high-density lipoprotein nanoparticle inhibits atherosclerotic plaque inflammation. Nat Commun. 2014;5(2):1661–7.

    Google Scholar 

  2. Yang H, Tyagi P, Kadam RS, Holden CA, Kompella UB. Hybrid dendrimer hydrogel/PLGA nanoparticle platform sustains drug delivery for one week and antiglaucoma effects for four days following one-time topical administration. ACS Nano. 2012;6(9):7595–606.

    Article  CAS  Google Scholar 

  3. Hadinoto K, Sundaresan A, Cheow WS. Lipid–polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review. Eur J Pharm Biopharm. 2013;85(3):427–43.

    Article  CAS  Google Scholar 

  4. Tan SW, Li X, Guo YJ, Zhang ZP. Lipid-enveloped hybrid nanoparticles for drug delivery. Nanoscale. 2013;5(3):860–72.

    Article  CAS  Google Scholar 

  5. Hu Y, Zhao Z, Ehrich M, Fuhrman K, Zhang C. In vitro controlled release of antigen in dendritic cells using pH-sensitive liposome-polymeric hybrid nanoparticles. Polymer. 2015;80:171–9.

    Article  CAS  Google Scholar 

  6. Zhang L, Zhang LF. Lipid-polymer hybrid nanoparticles: synthesis, characterization and characterization and applictions. Nano LIFE. 2010;01(01&02):163–73.

    Article  CAS  Google Scholar 

  7. Rjc B, Ravikumar R, Karuppagounder V, Bennet D, Rangasamy S, Thandavarayan RA. Lipid-polymer hybrid nanoparticle-mediated therapeutics delivery: advances and challenges. Drug Discov Today. 2017;22(8):1258–65.

    Article  Google Scholar 

  8. Wang HJ, Wang S, Liao ZY, Zhao PQ, Su WY, Niu RF, et al. Folate-targeting magnetic core–shell nanocarriers for selective drug release and imaging. Int J Pharm. 2012;430(1–2):342–9.

    Article  CAS  Google Scholar 

  9. Saadati R, Dadashzadeh S. Marked effects of combined TPGS and PVA emulsifiers in the fabrication of etoposide-loaded PLGA-PEG nanoparticles: in vitro and in vivo valuation. Int J Pharm. 2014;464(1–2):135–44.

    Article  CAS  Google Scholar 

  10. Zhang ZP, Tan SW, Feng SS. Vitamin E TPGS as a molecular biomaterial for drug delivery. Biomaterials. 2012;33(19):4889–906.

    Article  CAS  Google Scholar 

  11. Mu L, Feng SS. Vitamin E TPGS used as emulsifier in the solvent evaporation/extraction technique for fabrication of polymeric nanospheres for controlled release of paclitaxel (Taxol ®; ). J Control Release. 2002;80(1–3):129–44.

    Article  CAS  Google Scholar 

  12. Wang GY, Yu B, Wu YQ, Huang BL, Yuan Y, Liu CS. Controlled preparation and antitumor efficacy of vitamin E TPGS-functionalized PLGA nanoparticles for delivery of paclitaxel. Int J Pharm. 2013;446(1–2):24–33.

    Article  CAS  Google Scholar 

  13. Zhu HJ, Chen HB, Zeng XW, Wang ZY, Zhang XD, Wu YP, et al. Co-delivery of chemotherapeutic drugs with vitamin E TPGS by porous PLGA nanoparticles for enhanced chemotherapy against multi-drug resistance. Biomaterials. 2013;35(7):2391–400.

    Article  Google Scholar 

  14. Muthu MS, Kulkarni SA, Raju A, Feng SS. Theranostic liposomes of TPGS coating for targeted co-delivery of docetaxel and quantum dots. Biomaterials. 2012;33(12):3494–501.

    Article  CAS  Google Scholar 

  15. Li JL, Cheng XD, Chen Y, He WM, Ni L, Xiong PH, et al. Vitamin E TPGS modified liposomes enhance cellular uptake and targeted delivery of luteolin: an in vivo/in vitro evaluation. Int J Pharm. 2016;512(1):262–72.

    Article  CAS  Google Scholar 

  16. Vijayakumar MR, Vajanthri KY, Mahto SK, Mishra N, Muthu MS, Singh S. Pharmacokinetics, biodistribution, in vitro cytotoxicity and biocompatibility of vitamin E TPGS coated trans resveratrol liposomes. Colloids Surf B Biointerfaces. 2016;145:479–91.

    Article  CAS  Google Scholar 

  17. Wang TC, Yin XD, Lu YP, Shan WG, Xiong SB. Formulation, antileukemia mechanism, pharmacokinetics, and biodistribution of a novel liposomal emodin. Int J Nanomedicine. 2012;7(5):2325–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu LS, He HL, Zhang MY, Zhang SS, Zhang WL, Liu JP. Hyaluronic acid-decorated reconstituted high density lipoprotein targeting atherosclerotic lesions. Biomaterials. 2014;35(27):8002–14.

    Article  CAS  Google Scholar 

  19. He HL, Zhang MY, Liu LS, Zhang SS, Liu JP, Zhang WL. Suppression of remodeling behaviors with arachidonic acid modification for enhanced in vivo antiatherogenic efficacies of lovastatin-loaded discoidal recombinant high density lipoprotein. Pharm Res. 2015;32(10):1–17.

    Article  Google Scholar 

  20. Dong B, Zhang C, Feng JB, Zhao YX, Li SY, Yang YP, et al. Overexpression of ACE2 enhances plaque stability in a rabbit model of atherosclerosis. Arterioscler Thromb Vasc Biol. 2008;28(7):1270–6.

    Article  CAS  Google Scholar 

  21. Zhang LF, Chan JM, Gu FX, Rhee JW, Wang AZ, Radovicmoreno AF, et al. Self-assembled lipid-polymer hybrid nanoparticles: a robust drug delivery platform. ACS Nano. 2008;2(8):1696–702.

    Article  CAS  Google Scholar 

  22. Yeung E, Cheng SC. Ciclosporin-loaded poly(lactide) microparticles: effect of TPGS. J Microencapsul. 2009;26(1):9–17.

    Article  CAS  Google Scholar 

  23. Yang CL, Wu TT, Qi Y, Zhang ZP. Recent advances in the application of vitamin E TPGS for drug delivery. Theranostics. 2018;8(2):464–85.

    Article  Google Scholar 

  24. Yin MX, Tan SW, Bao YL, Zhang ZP. Enhanced tumor therapy via drug co-delivery and in situ vascular-promoting strategy. J Control Release. 2017;258:108–20.

    Article  CAS  Google Scholar 

  25. Sadat SMA, Jahan ST, Haddadi A. Effects of size and surface charge of polymeric nanoparticles on in vitro and in vivo applications. JBNB. 2016;07(2):91–108.

    Article  CAS  Google Scholar 

  26. Belletti D, Grabrucker AM, Pederzoli F, Menrath I, Cappello V, Vandelli MA, et al. Exploiting the versatility of cholesterol in nanoparticles formulation. Int J Pharm. 2016;511(1):331–40.

    Article  CAS  Google Scholar 

  27. Cheow WS, Hadinoto K. Factors affecting drug encapsulation and stability of lipid-polymer hybrid nanoparticles. Colloids Surf B Biointerfaces. 2011;85(2):214–20.

    Article  CAS  Google Scholar 

  28. Liu XG, Su SS, Wei FX, Rong XH, Yang ZW, Liu JX, et al. Construction of nanoparticles based on amphiphilic copolymers of poly(γ-glutamic acid co-l-lactide)-1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine as a potential drug delivery carrier. J Colloid Interface Sci. 2014;413:54–64.

    Article  CAS  Google Scholar 

  29. Imanparast F, Faramarzi MA, Paknejad M, Kobarfard F, Amani A, Doosti M. Preparation, optimization, and characterization of simvastatin nanoparticles by electrospraying: an artificial neural networks study. J Appl Polym Sci 2016;133(28):n/a-n/a.

  30. Jing Z, Han XZ, Xiang L, Yun L, Zhao HP, Ming Y, et al. Core-shell hybrid liposomal vesicles loaded with panax notoginsenoside: preparation, characterization and protective effects on global cerebral ischemia/reperfusion injury and acute myocardial ischemia in rats. Int J Nanomedicine. 2012;7(1):4299–310.

    Google Scholar 

  31. Dearing N, Norgard NB. Rhabdomyolysis in a patient receiving high-dose simvastatin after the induction of therapeutic hypothermia. Ann Pharmacother. 2010;44(12):1994–7.

    Article  Google Scholar 

  32. Vijayakumar MR, Kumari L, Patel KK, Vuddanda PR, Vajanthri KY, Mahto SK, et al. Intravenous administration of trans-resveratrol-loaded TPGS-coated solid lipid nanoparticles for prolonged systemic circulation, passive brain targeting and improved in vitro cytotoxicity against C6 glioma cell lines. RSC Adv. 2016;6(55):50336–48.

    Article  CAS  Google Scholar 

  33. Rasmussen ST, Andersen JT, Nielsen TK, Cejvanovic V, Petersen KM, Henriksen T, et al. Simvastatin and oxidative stress in humans: a randomized, double-blinded, placebo-controlled clinical trial. Redox Biol. 2016;9(C):32–8.

    Article  CAS  Google Scholar 

  34. Sigala F, Efentakis P, Karageorgiadi D, Filis K, Zampas P, Iliodromitis EK, et al. Reciprocal regulation of eNOS, H2S and CO-synthesizing enzymes in human atheroma: correlation with plaque stability and effects of simvastatin. Redox Biol. 2017;12(C:70–81.

    Article  Google Scholar 

  35. Hosseini B, Saedisomeolia A, Skilton MR. Association between micronutrients intake/status and carotid intima media thickness: a systematic review. J Acad Nutr Diet. 2016;117(1):69–82.

    Article  Google Scholar 

  36. Wu TW, Hung CL, Liu CC, Wu YJ, Wang LY, Yeh HI. Associations of cardiovascular risk factors with carotid intima-media thickness in middle-age adults and elders. J Atheroscler Thromb. 2017;24(7):677–86.

    Article  Google Scholar 

  37. Romana B, Batger M, Prestidge CA, Colombo G, Sonvico F. Expanding the therapeutic potential of statins by means of nanotechnology enabled drug delivery systems. Curr Top Med Chem. 2014;14(9):1182–93.

    Article  CAS  Google Scholar 

Download references

Acknowledgements and Disclosures

The project described was financially supported by the National Natural Science Foundation of China (Grant No.81273466), Jiangsu Province Ordinary College and University Innovative Research Programs (Grant No. KYLX_0614) and the Priority Academic Program Development of Jiangsu Higher Education Institutions. The authors also wish to thank Atherosclerosis Research Centre (Nanjing Medical University, Nanjing, PR China) for the kind gift of murine macrophage cell line, and the technical support from KeyGEN BioTECH (Nanjing, Jiangsu). The authors declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Liu.

Electronic supplementary material

ESM 1

(DOCX 273 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., He, J., Zhang, W. et al. Fabrication of TPGS-Stabilized Liposome-PLGA Hybrid Nanoparticle Via a New Modified Nanoprecipitation Approach: In Vitro and In Vivo Evaluation. Pharm Res 35, 199 (2018). https://doi.org/10.1007/s11095-018-2485-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-018-2485-3

Keywords

Navigation