Skip to main content
Log in

A Study of Moisture Sorption and Dielectric Processes of Starch and Sodium Starch Glycolate

Theme: Formulation and Manufacturing of Solid Dosage Forms Guest Editors: Tony Zhou and Tonglei Li

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

This study explored the potential of combining the use of moisture sorption isotherms and dielectric relaxation profiles of starch and sodium starch glycolate (SSG) to probe the location of moisture in dried and hydrated samples.

Methods

Starch and SSG samples, dried and hydrated, were prepared. For hydrated samples, their moisture contents were determined. The samples were probed by dielectric spectroscopy using a frequency band of 0.1 Hz to 1 MHz to investigate their moisture-related relaxation profiles. The moisture sorption and desorption isotherms of starch and SSG were generated using a vapor sorption analyzer, and modeled using the Guggenheim-Anderson-de Boer equation.

Results

A clear high frequency relaxation process was detected in both dried and hydrated starches, while for dried starch, an additional slower low frequency process was also detected. The high frequency relaxation processes in hydrated and dried starches were assigned to the coupled starch-hydrated water relaxation. The low frequency relaxation in dried starch was attributed to the local chain motions of the starch backbone. No relaxation process associated with water was detected in both hydrated and dried SSG within the frequency and temperature range used in this study. The moisture sorption isotherms of SSG suggest the presence of high energy free water, which could have masked the relaxation process of the bound water during dielectric measurements.

Conclusion

The combined study of moisture sorption isotherms and dielectric spectroscopy was shown to be beneficial and complementary in probing the effects of moisture on the relaxation processes of starch and SSG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

ATR-FTIR:

Attenuated total reflectance Fourier transformed infrared

AUC:

Area under the curve

aw :

Water activity

D :

Thickness of the adsorbed moisture

Δε:

Dielectric strength

GAB:

Guggenheim-Anderson-de Boer

HW :

Hydrated water

 r :

Radius of the capillary

RH:

Relative humidity

SEM:

Scanning electron microscope

SSG:

Sodium starch glycolate

τmax :

Relaxation time

VSA:

Vapor sorption analyzer

References

  1. Moreton CR. Disintegrants in tableting. In: Augsburger LL, Stephen HW, editors. Pharmaceutical dosage forms: tablets. Boca Raton: CRC Press; 2008. p. 217–50.

    Chapter  Google Scholar 

  2. Schwartz JB, Zelinskie JA. The binding and disintegrant properties of the corn starch fractions: amylose and amylopectin. Drug Dev Ind Pharm. 1978;4(5):463–83.

    Article  CAS  Google Scholar 

  3. Augsburger LL, Brzeczko AW, Shah U, Hahm HA. Super disintegrants: characterization and function. In: Swarbrick J, editor. Encyclopedia of pharmaceutical technology. 3rd ed. Boca Raton: CRC Press; 2006. p. 3553-67.

    Google Scholar 

  4. Bolhuis G, van Kamp H, Lerk C. Effect of variation of degree of substitution, crosslinking and purity on the disintegration efficiency of sodium starch glycolate. Acta Pharm Technol. 1984;30(1):24–32.

    CAS  Google Scholar 

  5. Khan KA, Rhodes CT. Water-sorption properties of tablet disintegrants. J Pharm Sci. 1975;64(3):447–51.

    Article  CAS  Google Scholar 

  6. Zhao N, Augsburger LL. The influence of granulation on super disintegrant performance. Pharm Dev Technol. 2006;11(1):47–53.

    Article  CAS  Google Scholar 

  7. Gordon MS, Chowhan ZT. The effect of aging on disintegrant efficiency in direct compression tablets with varied solubility and hygroscopicity, in terms of dissolution. Drug Dev Ind Pharm. 1990;16(3):437–47.

    Article  CAS  Google Scholar 

  8. Kapsalis JG. Moisture sorption hysteresis. In: Stewart GF, editor. Water activity: influences on food quality. New York: Academic Press; 1981. p. 143–77.

    Chapter  Google Scholar 

  9. Feldman Y, Puzenko A, Ben Ishai P, Gutina Greenbaum A. The dielectric response of interfacial water—from the ordered structures to the single hydrated shell. Colloid Polym Sci. 2014;292(8):1923–32.

    Article  CAS  Google Scholar 

  10. Feldman Y, Puzenko A, Ryabov Y. Dielectric relaxation phenomena in complex materials. In: Coffey WT, Kalmykov YP, editors. Fractals, diffusion, and relaxation in disordered complex systems. New Jersey: Wiley; 2005. p. 1–125.

    Google Scholar 

  11. Kremer F, Schönhals A. Boardband dielectric spectroscopy. Berlin: Springer-Verlag; 2003.

    Book  Google Scholar 

  12. Kurzweil-Segev Y, Greenbaum A, Popov I, Golodnitsky D, Feldman Y. The role of the confined water in the dynamic crossover of hydrated lysozyme powders. PCCP. 2016;18(16):10992–9.

    Article  CAS  Google Scholar 

  13. Puzenko A, Levy E, Shendrik A, Talary MS, Caduff A, Feldman Y. Dielectric spectra broadening as a signature for dipole-matrix interaction. III. Water in adenosine monophosphate/adenosine-5′-triphosphate solutions. J Chem Phys. 2012;137(19):194502.

    Article  Google Scholar 

  14. Butler MF, Cameron REA. Study of the molecular relaxations in solid starch using dielectric spectroscopy. Polymer. 2000;41(6):2249–63.

    Article  CAS  Google Scholar 

  15. Katsuyoshi N, Shibuya N, Kainuma K. Dielectric relaxation in solid dextran and pullulan. Makromol Chem. 1985;186(2):433–8.

    Article  Google Scholar 

  16. Kaminski K, Kaminska E, Ngai KL, Paluch M, Wlodarczyk P, Kasprzycka A, et al. Identifying the origins of two secondary relaxations in polysaccharides. J Phys Chem B. 2009;113(30):10088–96.

    Article  CAS  Google Scholar 

  17. Scandola M, Ceccorulli G, Pizzoli M. Molecular motions of polysaccharides in the solid state: dextran, pullulan and amylose. Int J Biol Macromol. 1991;13(4):254–60.

    Article  CAS  Google Scholar 

  18. Bidault O, Assifaoui A, Champion D, Le Meste M. Dielectric spectroscopy measurements of the sub-Tg relaxations in amorphous ethyl cellulose: a relaxation magnitude study. J Non-Cryst Solids. 2005;351(14–15):1167–78.

    Article  CAS  Google Scholar 

  19. Schartel B, Wendling J, Wendorff JH. Cellulose/poly(vinyl alcohol) blends. 1. Influence of miscibility and water content on relaxations. Macromolecules. 1996;29(5):1521–7.

    Article  CAS  Google Scholar 

  20. Cerveny S, Schwartz GA, Bergman R, Swenson J. Glass transition and relaxation processes in supercooled water. Phys Rev Lett. 2004;93(24):245702.

    Article  Google Scholar 

  21. McBrierty VJ, Keely CM, Coyle FM, Xu H, Vij JK. Hydration and plasticization effects in cellulose acetate: molecular motion and relaxation. Faraday Discuss. 1996;103(0):255–68.

    Article  CAS  Google Scholar 

  22. Bradley SA, Carr SH. Mechanical loss processes in polysaccharides. J Polym Sci Polym Phys Ed. 1976;14(1):111–24.

    Article  CAS  Google Scholar 

  23. Greenspan L. Humidity fixed points of binary saturated aqueous solutions. J Res Natl Bur Stand, Sect A: Phys Chem. 1977;81A(1):89–96.

    Article  Google Scholar 

  24. de Boer JH. The dynamical character of adsorption. 2nd ed. Oxford: Clarendon Press; 1968.

    Google Scholar 

  25. Guggenheim EA. Applications of statistical mechanics. Oxford: Clarendon Press; 1966.

    Google Scholar 

  26. Ramasamy PA. Dielectric relaxation study of starch–water and starch–glycerol films. Ionics. 2012;18:413–23.

    Article  CAS  Google Scholar 

  27. Gainaru C, Fillmer A, Böhmer R. Dielectric response of deeply supercooled hydration water in the connective tissue proteins collagen and elastin. J Phys Chem B. 2009;113(38):12628–31.

    Article  CAS  Google Scholar 

  28. Jansson H, Swenson J. The protein glass transition as measured by dielectric spectroscopy and differential scanning calorimetry. Biochim Biophys Acta: proteins. Proteomics. 2010;1804(1):20–6.

    CAS  Google Scholar 

  29. Khodadadi S, Pawlus S, Roh JH, Sakai VG, Mamontov E, Sokolov AP. The origin of the dynamic transition in proteins. J Chem Phys. 2008;128(19):195106.

    Article  CAS  Google Scholar 

  30. Khodadadi S, Pawlus S, Sokolov AP. Influence of hydration on protein dynamics: combining dielectric and neutron scattering spectroscopy data. J Phys Chem B. 2008;112(45):14273–80.

    Article  CAS  Google Scholar 

  31. Lusceac SA, Rosenstihl M, Vogel M, Gainaru C, Fillmer A, Böhmer RNMR. Dielectric studies of hydrated collagen and elastin: evidence for a delocalized secondary relaxation. J Non-Cryst Solids. 2011;357(2):655–63.

    Article  CAS  Google Scholar 

  32. Nakanishi M, Sokolov AP. Protein dynamics in a broad frequency range: dielectric spectroscopy studies. J Non-Cryst Solids. 2015;407:478–85.

    Article  CAS  Google Scholar 

  33. Panagopoulou A, Kyritsis A, Aravantinou A-M, Nanopoulos D, Serra i RS, Gómez Ribelles JL, et al. Glass transition and dynamics in lysozyme-water mixtures over wide ranges of composition. Food Biophys. 2011;6(2):199–209.

    Article  Google Scholar 

  34. Panagopoulou A, Kyritsis A, Shinyashiki N, Pissis P. Protein and water dynamics in bovine serum albumin-water mixtures over wide ranges of composition. J Phys Chem B. 2012;116(15):4593–602.

    Article  CAS  Google Scholar 

  35. Johari GP, Whalley E. The dielectric properties of ice Ih in the range 272–133 K. J Chem Phys. 1981;75(3):1333–40.

    Article  CAS  Google Scholar 

  36. McBain JW. An explanation of hysteresis in the hydration and dehydration of gels. J Am Chem Soc. 1935;57(4):699–700.

    Article  CAS  Google Scholar 

  37. Rao KS. Hysteresis in sorption. II. Scanning of the hysteresis loop. Titania gel-water system. J Phys Chem. 1941;45(3):506–12.

    Article  CAS  Google Scholar 

  38. Thomson WLX. On the equilibrium of vapour at a curved surface of liquid. Philos Mag. 1871;42(282):448–52.

  39. Cohan LH. Sorption hysteresis and the vapor pressure of concave surfaces. J Am Chem Soc. 1938;60(2):433–5.

    Article  CAS  Google Scholar 

  40. Bettelheim FA, Ehrlich SH. Water vapor sorption of mucopolysaccharides. J Phys Chem. 1963;67(10):1948–53.

    Article  CAS  Google Scholar 

  41. Hondoh T, Azuma K, Higashi A. Self-interstitials in ice. J Phys Colloques. 1987;48(C1):C1-183-7.

    Article  Google Scholar 

  42. Jafarpour G, Dantras E, Boudet A, Lacabanne C. Study of dielectric relaxations in cellulose by combined DDS and TSC. J Non-Cryst Solids. 2007;353(44–46):4108–15.

    Article  CAS  Google Scholar 

  43. Majumder TP, Meißner D, Schick C. Dielectric processes of wet and well-dried wheat starch. Carbohydr Polym. 2004;56(3):361–6.

    Article  CAS  Google Scholar 

  44. Szakonyi G, Zelkó R. Water content determination of superdisintegrants by means of ATR-FTIR spectroscopy. J Pharm Biomed Anal. 2012;63:106–11.

    Article  CAS  Google Scholar 

  45. Falk M. The frequency of the H–O–H bending fundamental in solids and liquids. Spectrochim Acta, Pt A: Mol Spectrosc. 1984;40(1):43–8.

    Article  Google Scholar 

  46. Falk M, Ford TA. Infrared spectrum and structure of liquid water. Can J Chem. 1966;44(14):1699–707.

    Article  CAS  Google Scholar 

  47. Laporta M, Pegoraro M, Zanderighi L. Perfluorosulfonated membrane (Nafion): FT-IR study of the state of water with increasing humidity. PCCP. 1999;1(19):4619–28.

    Article  CAS  Google Scholar 

  48. Wiggins PM. Water structure in polymer membranes. Prog Polym Sci. 1988;13(1):1–35.

    Article  CAS  Google Scholar 

  49. Matveev YI, Grinberg VY, Tolstoguzov VB. The plasticizing effect of water on proteins, polysaccharides and their mixtures. Glassy state of biopolymers, food and seeds. Food Hydrocoll. 2000;14(5):425–37.

    Article  CAS  Google Scholar 

  50. Fröhlich H. Theory of dielectrics: dielectrics constant and dielectric loss. 2nd ed. Oxford: Clarendon Press; 1986.

    Google Scholar 

  51. Ellison WJ, Lamkaouchi K, Moreau JM. Water: a dielectric reference. J Mol Liq. 1996;68(2):171–279.

    Article  CAS  Google Scholar 

  52. Levy E, Puzenko A, Kaatze U, Ishai PB, Feldman Y. Dielectric spectra broadening as the signature of dipole-matrix interaction. I. Water in nonionic solutions. J Chem Phys. 2012;136(11):114502.

    Article  Google Scholar 

  53. Dyre JC, Maass P, Roling B, Sidebottom DL. Fundamental questions relating to ion conduction in disordered solids. Rep Prog Phys. 2009;72(4):046501.

    Article  Google Scholar 

  54. Khamzin AA, Popov II, Nigmatullin RR. Correction of the power law of ac conductivity in ion-conducting materials due to the electrode polarization effect. Phys Rev E. 2014;89(3):032303.

    Article  CAS  Google Scholar 

  55. Toprak C, Agar JN, Falk M. State of water in cellulose acetate membranes. J Chem Soc, Faraday Trans 1. 1979;75(0):803–15.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Wan Sia Heng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hiew, T.N., Huang, R., Popov, I. et al. A Study of Moisture Sorption and Dielectric Processes of Starch and Sodium Starch Glycolate. Pharm Res 34, 2675–2688 (2017). https://doi.org/10.1007/s11095-017-2252-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-017-2252-x

KEY WORDS

Navigation