Skip to main content

Advertisement

Log in

Selection of P-Glycoprotein Inhibitor and Formulation of Combinational Nanoformulation Containing Selected Agent Curcumin and DOX for Reversal of Resistance in K562 Cells

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To select P-glycoprotein (P-gp) inhibitor from natural source for reversal of DOX resistance in K562 cells and to develop selected one in to nanoformulation in combination with DOX.

Methods

DOX resistant K562 (K562R) cells were developed and reversal of resistance by P-gp inhibitor was validated by co-treatment with verapamil. The p-gp inhibitors were evaluated for their potential to inhibit P-gp (calcein assay) and to reverse drug resistance (XTT cell viability assay). The selected agent, curcumin was formulated in to liposome along with DOX and characterized for size, zeta potential, encapsulation efficiency and release rate. Uptake, P-gp inhibition and reversal of acquired drug resistance in K562R cells were performed.

Results

P-gp inhibitors such as biochanin-A and curcumin were marked suitable for combination with DOX. However, only curcumin could increase the sensitivity of DOX at all dosing levels, therefore used for further studies. Liposomes loaded with curcumin were formulated and characterized where a prolonged release was observed. The uptake of liposomal curcumin was comparable to nanodispersed curcumin but had lower cytotoxicity. DOX and curcumin coloaded liposomes successfully reversed DOX resistance in K562 cells. Conclusion: The coloaded liposomes increased the safety of curcumin with improved efficacy thus can be employed for reversal of acquired DOX resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CAN:

Acetonitrile

BioA:

Biochanin A

Cur:

Curcumin

Daid:

Daidzein

DHF:

Dihydrofisetin

DMSO:

Dimethyl sulphoxide

DOX:

Doxorubicin

DSPE-PEG:

1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[maleimide(polyethylene glycol)]

EE:

Encapsulation efficiency

HSPC:

Hydrogenated soy phosphatidyl choline

MFI:

Mean fluorescent intensities

OPA:

Ortho-phosphoric acid

PFA:

Paraformal dehyde

P-gp:

P-glycoprotein

EPR:

Enhanced permeation and retention

Gen:

Genistein

mPEG:

Methoxy polyethyleneglycol

PCL:

Poly-ε- caprolactone

Resv:

Resveratrol

Sily:

Silymarin

References

  1. Golan DE. Principles of pharmacology: the pathophysiologic basis of drug therapy. Wolters Kluwer Health/Lippincott Williams & Wilkins; 2008.

    Google Scholar 

  2. Dudhatra GB, Mody SK, Awale MM, Patel HB, Modi CM, Kumar A, et al. A comprehensive review on Pharmacotherapeutics of herbal Bioenhancers. Sci World J. 2012;637953:1–33.

    Article  Google Scholar 

  3. Yardley DA. Drug resistance and the role of combination chemotherapy in improving patient outcomes. Intern J Breast Cancer. 2013;137414:1–15.

    Article  Google Scholar 

  4. Komarova NL, Boland CR. Cancer: calculated treatment. Nature. 2013;499(7458):291–2.

    Article  CAS  Google Scholar 

  5. Konig J, Muller F, Fromm MF. Transporters and drug-drug interactions: important determinants of drug disposition and effects. Pharmacol Rev. 2013;65(3):944–66.

    Article  Google Scholar 

  6. Varma MV, Ashokraj Y, Dey CS, Panchagnula R. P-glycoprotein inhibitors and their screening: a perspective from bioavailability enhancement. Pharmacol Res. 2003;48(4):347–59.

    Article  CAS  Google Scholar 

  7. Abdallah HM, Al-Abd AM, El-Dine RS, El-Halawany AM. P-glycoprotein inhibitors of natural origin as potential tumor chemo-sensitizers: a review. J Adv Res. 2015;6(1):45–62.

    Article  CAS  Google Scholar 

  8. Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL, Chu X, et al. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9(3):215–36.

    Article  CAS  Google Scholar 

  9. Watkins R, Wu L, Zhang C, Davis RM, Xu B. Natural product-based nanomedicine: recent advances and issues. Int J Nanomedicine. 2015;10:6055–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Bharali DJ, Siddiqui IA, Adhami VM, Chamcheu JC, Aldahmash AM, Mukhtar H, et al. Nanoparticle delivery of natural products in the prevention and treatment of cancers: current status and future prospects. Cancer. 2011;3(4):4024–45.

    Article  CAS  Google Scholar 

  11. Sinha R, Kim GJ, Nie S, Shin DM. Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol Cancer Ther. 2006;5(8):1909–17.

    Article  CAS  Google Scholar 

  12. Shapira A, Livney YD, Broxterman HJ, Assaraf YG. Nanomedicine for targeted cancer therapy: towards the overcoming of drug resistance. Drug Resist Updat. 2011;14(3):150–63.

    Article  CAS  Google Scholar 

  13. Dash TK, Konkimalla VB. Formulation and optimization of doxorubicin and biochanin a combinational liposomes for reversal of chemoresistance. AAPS PharmSciTech. 2017;18(4):1116–24.

    Article  Google Scholar 

  14. Hu C-MJ, Zhang L. Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochem Pharmacol. 2012;83(8):1104–11.

    Article  CAS  Google Scholar 

  15. Fan Y, Zhang Q. Development of liposomal formulations: from concept to clinical investigations. Asian J Pharm Sci. 2013;8(2):81–7.

    Article  CAS  Google Scholar 

  16. Dash TK, Konkimalla VB. Comparative study of different nano-formulations of curcumin for reversal of doxorubicin resistance in K562R cells. Pharm Res. 2017;34(2):279–89.

    Article  Google Scholar 

  17. Kathawate L, Joshi PV, Dash TK, Pal S, Nikalje M, Weyhermller T, et al. Reaction between lawsone and aminophenol derivatives: synthesis, characterization, molecular structures and antiproliferative activity. J Mol Struct. 2014;1075:397–405.

    Article  CAS  Google Scholar 

  18. Abraham SA, Waterhouse DN, Mayer LD, Cullis PR, Madden TD, Bally MB. The liposomal formulation of doxorubicin. Methods Enzymol. 2005;391:71–97.

    Article  CAS  Google Scholar 

  19. Lichtenberg D, Barenholz Y. Liposomes: Preparation, characterization, and preservation. Methods of Biochemical Analysis: John Wiley & Sons, Inc.; 2006. p. 337–462.

    Google Scholar 

  20. Sun D, Zhuang X, Xiang X, Liu Y, Zhang S, Liu C, et al. A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther. 2010;18(9):1606–14.

    Article  CAS  Google Scholar 

  21. Kang L, Gao Z, Huang W, Jin M, Wang Q. Nanocarrier-mediated co-delivery of chemotherapeutic drugs and gene agents for cancer treatment. Acta Pharm Sin B. 2015;5(3):169–75.

    Article  Google Scholar 

  22. Ma L, Kohli M, Smith A. Nanoparticles for combination drug therapy. ACS Nano. 2013;7(11):9518–25.

    Article  CAS  Google Scholar 

  23. Wu CP, Ohnuma S, Ambudkar SV. Discovering natural product modulators to overcome multidrug resistance in cancer chemotherapy. Curr Pharm Biotechnol. 2011;12(4):609–20.

    Article  CAS  Google Scholar 

  24. Srivalli KMR, Lakshmi PK. Overview of P-glycoprotein inhibitors: a rational outlook. Brazilian J Pharm Sci. 2012;48(3):353–67.

    Article  CAS  Google Scholar 

  25. Werle M. Natural and synthetic polymers as inhibitors of drug efflux pumps. Pharm Res. 2008;25(3):500–11.

    Article  CAS  Google Scholar 

  26. Ichikawa Y, Hirokawa M, Aiba N, Fujishima N. Omatsuda a, Saitoh H, et al. monitoring the expression profiles of doxorubicin-resistant K562 human leukemia cells by serial analysis of gene expression. Int J Hematol. 2004;79(3):276–82.

    Article  CAS  Google Scholar 

  27. Xu HB, Li L, Liu GQ. Reversal of P-glycoprotein-mediated multidrug resistance by guggulsterone in doxorubicin-resistant human myelogenous leukemia (K562/DOX) cells. Pharmazie. 2009;64(10):660–5.

    CAS  PubMed  Google Scholar 

  28. Olson DP, Taylor BJ, Ivy SP. Detection of MRP functional activity: Calcein AM but not BCECF AM as a multidrug resistance-related protein (MRP1) substrate. Cytometry. 2001;46(2):105–13.

    Article  CAS  Google Scholar 

  29. Hollo Z, Homolya L, Davis CW, Sarkadi B. Calcein accumulation as a fluorometric functional assay of the multidrug transporter. Biochim Biophys Acta. 1994;1191(2):384–8.

    Article  CAS  Google Scholar 

  30. Stavrovskaya AA. Cellular mechanisms of multidrug resistance of tumor cells. Biochemistry (Mosc). 2000;65(1):95–106.

    CAS  Google Scholar 

  31. Persidis A. Cancer multidrug resistance. Nat Biotechnol. 1999;17(1):94–5.

    Article  CAS  Google Scholar 

  32. Mamot C, Drummond DC, Hong K, Kirpotin DB, Park JW. Liposome-based approaches to overcome anticancer drug resistance. Drug Resist Updat. 2003;6(5):271–9.

    Article  CAS  Google Scholar 

  33. Gabizon A, Shmeeda H, Barenholz Y. Pharmacokinetics of pegylated liposomal doxorubicin: review of animal and human studies. Clin Pharmacokinet. 2003;42(5):419–36.

    Article  CAS  Google Scholar 

  34. Lin YL, Liu YK, Tsai NM, Hsieh JH, Chen CH, Lin CM, et al. A Lipo-PEG-PEI complex for encapsulating curcumin that enhances its antitumor effects on curcumin-sensitive and curcumin-resistance cells. Nanomedicine. 2012;8(3):318–27.

    Article  CAS  Google Scholar 

  35. Dhule SS, Penfornis P, Frazier T, Walker R, Feldman J, Tan G, et al. Curcumin-loaded gamma-cyclodextrin liposomal nanoparticles as delivery vehicles for osteosarcoma. Nanomedicine. 2012;8(4):440–51.

    Article  CAS  Google Scholar 

  36. Lazar AN, Mourtas S, Youssef I, Parizot C, Dauphin A, Delatour B, et al. Curcumin-conjugated nanoliposomes with high affinity for Abeta deposits: possible applications to Alzheimer disease. Nanomedicine. 2013;9(5):712–21.

    Article  CAS  Google Scholar 

  37. Lee WH, Loo CY, Young PM, Traini D, Mason RS, Rohanizadeh R. Recent advances in curcumin nanoformulation for cancer therapy. Expert Opin Drug Deliv. 2014;11(8):1183–201.

    Article  CAS  Google Scholar 

  38. Ghalandarlaki N, Alizadeh AM, Ashkani-Esfahani S. Nanotechnology-applied curcumin for different diseases therapy. Biomed Res Int. 2014;394264:1–23.

    Article  Google Scholar 

  39. Jourghanian P, Ghaffari S, Ardjmand M, Haghighat S, Mohammadnejad M. Sustained release curcumin loaded solid lipid nanoparticles. Advanced Pharmaceutical Bulletin. 2016;6(1):17–21.

    Article  CAS  Google Scholar 

  40. Chen X, Zou LQ, Niu J, Liu W, Peng SF, Liu CM. The stability, sustained release and cellular antioxidant activity of curcumin Nanoliposomes. Molecules. 2015;20(8):14293–311.

    Article  CAS  Google Scholar 

  41. Chen Y, Wu Q, Zhang Z, Yuan L, Liu X, Zhou L. Preparation of curcumin-loaded liposomes and evaluation of their skin permeation and pharmacodynamics. Molecules. 2012;17(5):5972–87.

    Article  CAS  Google Scholar 

  42. Li H, Li M, Chen C, Fan A, Kong D, Wang Z, et al. On-demand combinational delivery of curcumin and doxorubicin via a pH-labile micellar nanocarrier. Int J Pharm. 2015;495(1):572–8.

    Article  CAS  Google Scholar 

  43. Zhang Y, Yang C, Wang W, Liu J, Liu Q, Huang F, et al. Co-delivery of doxorubicin and curcumin by pH-sensitive prodrug nanoparticle for combination therapy of cancer. Sci Rep. 2016;6:1–12.

Download references

Acknowledgments and Disclosures

Authors acknowledge SERB, Govt. of India, for funding “Fast Track Scheme for Young Scientists” grant (No. SR/FT/LS-136/2011) and NISER, DAE, Govt. of India, for financial support as well as fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Badireenath Konkimalla.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dash, T.K., Konkimalla, V. Selection of P-Glycoprotein Inhibitor and Formulation of Combinational Nanoformulation Containing Selected Agent Curcumin and DOX for Reversal of Resistance in K562 Cells. Pharm Res 34, 1741–1750 (2017). https://doi.org/10.1007/s11095-017-2182-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-017-2182-7

Key Words

Navigation