Skip to main content

Advertisement

Log in

Population In Vitro-In Vivo Correlation Model Linking Gastrointestinal Transit Time, pH, and Pharmacokinetics: Itraconazole as a Model Drug

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To establish an in vitro-in vivo correlation (IVIVC) model for Sporanox and SUBA-itraconazole formulations and to understand the impact of gastrointestinal (GI) pH and transit times on itraconazole dissolution and absorption.

Methods

IVIVC was developed based on fed/fasted pharmacokinetic data from randomized cross-over trials, in vitro dissolution studies, and prior information about typical and between subject variability of GI pH and transit times. Data were analysed using the population modelling approach as implemented in NONMEM.

Results

Dissolution kinetics were described using first order models. The in vivo pharmacokinetics of itraconazole was described with a 2-compartment model with 4-transit absorption compartments. Pharmacokinetic profiles for fasted itraconazole periods were described based on the in vitro dissolution model, in vivo disposition model, and the prior information on GI pH and transit times. The IVIVC model indicated that drug dissolution in the fed state required an additional pH-independent dissolution pathway. The IVIVC models were presented in a ‘Shiny’ application.

Conclusion

An IVIVC model was established and internally evaluated for the two itraconazole formulations. The IVIVC model provides more insight into the observed variability of itraconazole pharmacokinetics and indicated that GI pH and transit times influence in vivo dissolution and exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AIC:

Akaike information criteria

AUC:

Area under the concentration-time curve

BCS:

Biopharmaceutics classification system

Cmax :

Maximum concentration

GI:

Gastrointestinal

GITT:

Gastrointestinal transit time

HPLC:

High performance liquid chromatography

IVIVC:

In vitro-in vivo correlation

MOFV:

Minimum objective function value

MTIME:

Model event time

NONMEM:

Non-linear mixed effect modelling

VPC:

Visual predictive check

References

  1. Boogaerts M, Maertens J. Clinical experience with itraconazole in systemic fungal infections. Drugs. 2001;61(1):39–47.

    Article  CAS  PubMed  Google Scholar 

  2. De Beule K, Van Gestel J. Pharmacology of itraconazole. Drugs. 2001;61(1):27–37.

    Article  PubMed  Google Scholar 

  3. Peeters J, Neeskens P, Tollenaere JP, Van Remoortere P, Brewster ME. Characterization of the interaction of 2‐hydroxypropyl‐β‐cyclodextrin with itraconazole at pH 2, 4, and 7. J Pharm Sci. 2002;91(6):1414–22.

    Article  CAS  PubMed  Google Scholar 

  4. Poirier J-M, Cheymol G. Optimisation of itraconazole therapy using target drug concentrations. Clin Pharmacokinet. 1998;35(6):461–73.

    Article  CAS  PubMed  Google Scholar 

  5. Abuhelwa AY, Foster DJ, Mudge S, Hayes D, Upton RN. Population pharmacokinetic modelling of itraconazole and hydroxyl-itraconazole for oral SUBA-itraconazole and Sporanox capsule formulations in healthy subjects in fed and fasted states. Antimicrob Agents Chemother. 2015.

  6. Yun H-y, Baek MS, Park IS, Choi BK, Kwon K-i. Comparative analysis of the effects of rice and bread meals on bioavailability of itraconazole using NONMEM in healthy volunteers. Eur J Clin Pharmacol. 2006;62(12):1033–9.

    Article  CAS  PubMed  Google Scholar 

  7. Jaruratanasirikul S, Kleepkaew A. Influence of an acidic beverage (Coca-Cola) on the absorption of itraconazole. Eur J Clin Pharmacol. 1997;52(3):235–7.

    Article  CAS  PubMed  Google Scholar 

  8. Smith D, Velde V, Woestenborghs R, Gazzard B. The pharmacokinetics of oral itraconazole in AIDS patients. J Pharm Pharmacol. 1992;44(7):618–9.

    Article  CAS  PubMed  Google Scholar 

  9. Janssen Pharmaceuticals Inc. Sporanox (itraconazole) capsules. Janssen Pharmaceuticals Inc, Beers, Belgium.

  10. Beal S, Sheiner LB, Boeckmann A, Bauer RJ. NONMEM user’s guides, part V. (1989–2009). Ellicott City: Icon Development Solutions; 2009.

    Google Scholar 

  11. R Core Team. R: a language and environment for statistical computing Vienna, Austria R Foundation for Statistical Computing; 2014.

  12. Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer; 2009.

    Book  Google Scholar 

  13. Wickham H. plyr—the split-apply-combine strategy for data analysis. J Stat Softw. 2011;40(1):1–29.

    Article  Google Scholar 

  14. Wickham H. Scales: Scale functions for graphics: CRAN.R-project.org; 2014.

  15. Ludden TM, Beal SL, Sheiner LB. Comparison of the Akaike Information Criterion, the Schwarz criterion and the F test as guides to model selection. J Pharmacokinet Biopharm. 1994;22(5):431–45.

    Article  CAS  PubMed  Google Scholar 

  16. Mould DR, Upton RN. Basic concepts in population modeling, simulation, and model-based drug development-part 2: introduction to pharmacokinetic modeling methods. CPT Pharmacometrics Syst Pharmacol. 2013;2, e38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wagner JG. Interpretation of percent dissolved‐time plots derived from in vitro testing of conventional tablets and capsules. J Pharm Sci. 1969;58(10):1253–7.

    Article  CAS  PubMed  Google Scholar 

  18. Higuchi T. Mechanism of sustained‐action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci. 1963;52(12):1145–9.

    Article  CAS  PubMed  Google Scholar 

  19. Hixson A, Crowell J. Dependence of reaction velocity upon surface and agitation. Ind Eng Chem. 1931;23(10):1160–8.

    Article  CAS  Google Scholar 

  20. Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm. 1983;15(1):25–35.

    Article  CAS  Google Scholar 

  21. Simonian HP, Vo L, Doma S, Fisher RS, Parkman HP. Regional postprandial differences in pH within the stomach and gastroesophageal junction. Dig Dis Sci. 2005;50(12):2276–85.

    Article  PubMed  Google Scholar 

  22. Evans DF, Pye G, Bramley R, Clark AG, Dyson TJ, Hardcastle JD. Measurement of gastrointestinal pH profiles in normal ambulant human subjects. Gut. 1988;29(8):1035–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. McCloy R, Greenberg G, Baron J. Duodenal pH in health and duodenal ulcer disease: effect of a meal, Coca-Cola, smoking, and cimetidine. Gut. 1984;25(4):386–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ewe K, Press AG, Bollen S, Schuhn I. Gastric emptying of indigestible tablets in relation to composition and time of ingestion of meals studied by metal detector. Dig Dis Sci. 1991;36(2):146–52.

    Article  CAS  PubMed  Google Scholar 

  25. Davis S, Hardy J, Fara J. Transit of pharmaceutical dosage forms through the small intestine. Gut. 1986;27(8):886–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. RStudio Inc. Shiny: web application framework for R. R package version 0.10.1. http://CRAN.R-project.org/package=shiny2015.

  27. Abuhelwa AY, Foster DJ, Upton RN. ADVAN-style analytical solutions for common pharmacokinetic models. J Pharmacol Toxicol Methods. 2015;73:42–8.

    Article  CAS  PubMed  Google Scholar 

  28. Mooney K, Mintun M, Himmelstein K, Stella V. Dissolution kinetics of carboxylic acids II: effect of buffers. J Pharm Sci. 1981;70(1):22–32.

    Article  CAS  PubMed  Google Scholar 

  29. Lange D, Pavao JH, Wu J, Klausner M. Effect of a cola beverage on the bioavailability of itraconazole in the presence of H2 blockers. J Clin Pharmacol. 1997;37(6):535–40.

    Article  CAS  PubMed  Google Scholar 

  30. Clarke G, Newton J, Short M. Gastrointestinal transit of pellets of differing size and density. Int J Pharm. 1993;100(1):81–92.

    Article  CAS  Google Scholar 

  31. Devereux J, Newton J, Short M. The influence of density on the gastrointestinal transit of pellets. J Pharm Pharmacol. 1990;42(7):500–1.

    Article  CAS  PubMed  Google Scholar 

  32. Abrahamsson B, Alpsten M, Jonsson UE, Lundberg P, Sandberg A, Sundgren M, et al. Gastro-intestinal transit of a multiple-unit formulation (metoprolol CR/ZOK) and a non-disintegrating tablet with the emphasis on colon. Int J Pharm. 1996;140(2):229–35.

    Article  CAS  Google Scholar 

  33. Charman WN, Porter CJ, Mithani S, Dressman JB. Physicochemical and physiological mechanisms for the effects of food on drug absorption: the role of lipids and pH. J Pharm Sci. 1997;86(3):269–82.

    Article  CAS  PubMed  Google Scholar 

  34. Food and Drug Administration. Guidance for industry: extended release oral dosage forms: development, evaluation, and application of in vitro/in vivo correlations. Center for Drug Evaluation and Research, Rockville. 1997.

  35. Mayne Pharma International Pty Ltd. Lozanoc® (Itraconazole) 50 mg capsules: consumer medicine information. Available from: https://www.betterhealth.vic.gov.au/~/media/bhc/files/medicine%20guides%20library/11/cmi11099.pdf.

  36. Banka S, Ryan K, Thomson W, Newman WG. Pernicious anemia—genetic insights. Autoimmun Rev. 2011;10(8):455–9.

    Article  PubMed  Google Scholar 

  37. Lake-Bakaar G, Quadros E, Beidas S, Elsakr M, Tom W, Wilson DE, et al. Gastric secretory failure in patients with the acquired immunodeficiency syndrome (AIDS). Ann Intern Med. 1988;109(6):502–4.

    Article  CAS  PubMed  Google Scholar 

  38. Lu PJ, Hsu PI, Chen CH, Hsiao M, Chang WC, Tseng HH, et al. Gastric juice acidity in upper gastrointestinal diseases. World J Gastroenterol. 16(43):5496–501.

  39. Weitschies W, Blume H, Mönnikes H. Magnetic marker monitoring: high resolution real-time tracking of oral solid dosage forms in the gastrointestinal tract. Eur J Pharm Biopharm. 2010;74(1):93–101.

    Article  CAS  PubMed  Google Scholar 

  40. Agoram B, Woltosz WS, Bolger MB. Predicting the impact of physiological and biochemical processes on oral drug bioavailability. Adv Drug Deliv Rev. 2001;50:S41–67.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

All the pharmacokinetic studies used in the analysis were sponsored by Mayne Pharma International. S.M and D.H are employees at Mayne Pharma. R.U. has acted as a paid consultant for Mayne Pharma International. The Australian Centre for Pharmacometrics is an initiative of the Australian Government as part of the National Collaborative Research Infrastructure Strategy. A.Y.A is a PhD student receiving an Endeavour Scholarship funded by the Department of Education and Training of the Australian Government (Scholarship ID no. 4088).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Y. Abuhelwa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 47 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abuhelwa, A.Y., Mudge, S., Hayes, D. et al. Population In Vitro-In Vivo Correlation Model Linking Gastrointestinal Transit Time, pH, and Pharmacokinetics: Itraconazole as a Model Drug. Pharm Res 33, 1782–1794 (2016). https://doi.org/10.1007/s11095-016-1917-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-1917-1

KEY WORDS

Navigation