Skip to main content
Log in

The Effects of oil-in-Water Nanoemulsion Polyethylene Glycol Surface Density on Intracellular Stability, Pharmacokinetics, and Biodistribution in Tumor Bearing Mice

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Lipid-based nanoparticles are extensively studied for drug delivery. These nanoparticles are often surface-coated with polyethylene glycol (PEG) to improve their biodistribution. Until now, the effects of varying PEG surface density have been studied in a narrow and low range. Here, the effects of high and a broad range of PEG surface densities on the in vivo performance of lipid-based nanoparticles were studied.

Methods

Oil-in-water nanoemulsions were prepared with PEG surface densities of 5–50 mol%. Confocal microscopy was used to assess intracellular disintegration in vitro. In vivo pharmacokinetics and biodistribution in tumor bearing mice were studied using a small animal optical imager.

Results

PEG surface density did not affect intracellular nanoemulsion stability. Surprisingly, circulation half-lives decreased with increasing PEG surface density. A plausible explanation was that nanoemulsion with high (50 mol%) PEG surface density activated the complement in a whole blood assay, whereas nanoemulsion with low (5 mol%) PEG density did not. In vivo, nanoemulsion with low PEG surface density was mostly confined to the tumor and organs of the mononuclear phagocyte system, whereas nanoemulsion with high PEG density accumulated throughout the mouse.

Conclusions

Optimal PEG surface density of lipid-based nanoparticles for tumor targeting was found to be below 10 mol%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ICA:

Intensity correlation analysis

ICQ:

Intensity correlation quotient

NE:

Nanoemulsion

PDM:

Product of differences from the mean

PEG:

Polyethylene glycol

PEG-DSPE:

1,2-disteraoyl-sn-glycerol-3-phosphoethanolamine-N-[methoxy(polyethylene-glycol)-2000]

PX (with X = 5, 10, 30, 50):

Nanoemulsion containing X mol% PEG-DSPE

SBR:

Signal to background ratio

TCC:

Total complement complex

References

  1. Duivenvoorden R, Tang J, Cormode DP, Mieszawska AJ, Izquierdo-Garcia D, Ozcan C, et al. A statin-loaded reconstituted high-density lipoprotein nanoparticle inhibits atherosclerotic plaque inflammation. Nat Commun. 2014;5:3065.

    PubMed Central  PubMed  Google Scholar 

  2. Quan L, Zhang Y, Crielaard BJ, Dusad A, Lele SM, Rijcken CJ, et al. Nanomedicines for inflammatory arthritis: head-to-head comparison of glucocorticoid-containing polymers, micelles, and liposomes. ACS Nano. 2014;8(1):458–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Gillies RJ, Schornack PA, Secomb TW, Raghunand N. Causes and effects of heterogeneous perfusion in tumors. Neoplasia. 1999;1(3):197–207.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Less JR, Skalak TC, Sevick EM, Jain RK. Microvascular architecture in a mammary carcinoma: branching patterns and vessel dimensions. Cancer Res. 1991;51(1):265–73.

    CAS  PubMed  Google Scholar 

  5. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46(12 Pt 1):6387–92.

    CAS  PubMed  Google Scholar 

  6. Seymour LW. Passive tumor targeting of soluble macromolecules and drug conjugates. Crit Rev Ther Drug Carrier Syst. 1992;9(2):135–87.

    CAS  PubMed  Google Scholar 

  7. Prabhakar U, Maeda H, Jain RK, Sevick-Muraca EM, Zamboni W, Farokhzad OC, et al. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res. 2013;73(8):2412–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Wagner V, Dullaart A, Bock AK, Zweck A. The emerging nanomedicine landscape. Nat Biotechnol. 2006;24(10):1211–7.

    Article  CAS  PubMed  Google Scholar 

  9. Gianella A, Jarzyna PA, Mani V, Ramachandran S, Calcagno C, Tang J, et al. Multifunctional nanoemulsion platform for imaging guided therapy evaluated in experimental cancer. ACS Nano. 2011;5(6):4422–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Lanza GM, Winter PM, Caruthers SD, Hughes MS, Hu G, Schmieder AH, et al. Theragnostics for tumor and plaque angiogenesis with perfluorocarbon nanoemulsions. Angiogenesis. 2010;13(2):189–202.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Chan JM, Zhang L, Yuet KP, Liao G, Rhee JW, Langer R, et al. PLGA-lecithin-PEG core-shell nanoparticles for controlled drug delivery. Biomaterials. 2009;30(8):1627–34.

    Article  CAS  PubMed  Google Scholar 

  12. Cormode DP, Skajaa GO, Delshad A, Parker N, Jarzyna PA, Calcagno C, et al. A versatile and tunable coating strategy allows control of nanocrystal delivery to cell types in the liver. Bioconjug Chem. 2011;22(3):353–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science. 2002;298(5599):1759–62.

    Article  CAS  PubMed  Google Scholar 

  14. Allen TM. Long-circulating (sterically stabilized) liposomes for targeted drug delivery. Trends Pharmacol Sci. 1994;15(7):215–20.

    Article  CAS  PubMed  Google Scholar 

  15. Howard MD, Jay M, Dziubla TD, Lu X. PEGylation of nanocarrier drug delivery systems: state of the Art. J Biomed Nanotechnol. 2008;4(2):133–48.

    Article  CAS  Google Scholar 

  16. Papahadjopoulos D, Allen TM, Gabizon A, Mayhew E, Matthay K, Huang SK, et al. Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci U S A. 1991;88(24):11460–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Ryan SM, Mantovani G, Wang X, Haddleton DM, Brayden DJ. Advances in PEGylation of important biotech molecules: delivery aspects. Expert Opin Drug Deliv. 2008;5(4):371–83.

    Article  CAS  PubMed  Google Scholar 

  18. Liu F, Liu D. Long-circulating emulsions (oil-in-water) as carriers for lipophilic drugs. Pharm Res. 1995;12(7):1060–4.

    Article  CAS  PubMed  Google Scholar 

  19. Allen TM, Austin GA, Chonn A, Lin L, Lee KC. Uptake of liposomes by cultured mouse bone marrow macrophages: influence of liposome composition and size. Biochim Biophys Acta (BBA) - Biomembr. 1991;1061(1):56–64.

    Article  CAS  Google Scholar 

  20. Klibanov AL, Maruyama K, Torchilin VP, Huang L. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett. 1990;268(1):235–7.

    Article  CAS  PubMed  Google Scholar 

  21. Wu NZ, Da D, Rudoll TL, Needham D, Whorton AR, Dewhirst MW. Increased microvascular permeability contributes to preferential accumulation of Stealth liposomes in tumor tissue. Cancer Res. 1993;53(16):3765–70.

    CAS  PubMed  Google Scholar 

  22. Dos Santos N, Allen C, Doppen A-M, Anantha M, Cox KAK, Gallagher RC, et al. Influence of poly(ethylene glycol) grafting density and polymer length on liposomes: Relating plasma circulation lifetimes to protein binding. Biochim Biophys Acta (BBA) - Biomembr. 2007;1768(6):1367–77.

    Article  Google Scholar 

  23. Schiffelers RM, Bakker-Woudenberg IAJM, Snijders SV, Storm G. Localization of sterically stabilized liposomes in Klebsiella pneumoniae-infected rat lung tissue: influence of liposome characteristics. Biochim Biophys Acta (BBA) - Biomembr. 1999;1421(2):329–39.

    Article  CAS  Google Scholar 

  24. Hak S, Helgesen E, Hektoen HH, Huuse EM, Jarzyna PA, Mulder WJ, et al. The effect of nanoparticle polyethylene glycol surface density on ligand-directed tumor targeting studied in vivo by dual modality imaging. ACS Nano. 2012;6(6):5648–58.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Johnsson M, Edwards K. Liposomes, disks, and spherical micelles: aggregate structure in mixtures of gel phase phosphatidylcholines and poly(ethylene glycol)-phospholipids. Biophys J. 2003;85(6):3839–47.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Jarzyna PA, Skajaa T, Gianella A, Cormode DP, Samber DD, Dickson SD, et al. Iron oxide core oil-in-water emulsions as a multifunctional nanoparticle platform for tumor targeting and imaging. Biomaterials. 2009;30(36):6947–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Bolte S, Cordelieres FP. A guided tour into subcellular colocalization analysis in light microscopy. J Microsc. 2006;224(Pt 3):213–32.

    Article  CAS  PubMed  Google Scholar 

  28. Bøyum A. Separation of leukocytes from blood and bone marrow. Scand J Clin Lab Invest. 1968;21 Suppl 97:7.

    Google Scholar 

  29. Mollnes TE, Brekke OL, Fung M, Fure H, Christiansen D, Bergseth G, et al. Essential role of the C5a receptor in E coli-induced oxidative burst and phagocytosis revealed by a novel lepirudin-based human whole blood model of inflammation. Blood. 2002;100(5):1869–77.

    CAS  PubMed  Google Scholar 

  30. Kulkarni S, Feng S-S. Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery. Pharm Res. 2013:1–11.

  31. Drummond DC, Noble CO, Hayes ME, Park JW, Kirpotin DB. Pharmacokinetics and in vivo drug release rates in liposomal nanocarrier development. J Pharm Sci. 2008;97(11):4696–740.

    Article  CAS  PubMed  Google Scholar 

  32. Faraji AH, Wipf P. Nanoparticles in cellular drug delivery. Bioorg Med Chem. 2009;17(8):2950–62.

    Article  CAS  PubMed  Google Scholar 

  33. Harris JM, Martin NE, Modi M. Pegylation: a novel process for modifying pharmacokinetics. Clin Pharmacokinet. 2001;40(7):539–51.

    Article  CAS  PubMed  Google Scholar 

  34. Hamad I, Hunter AC, Szebeni J, Moghimi SM. Poly(ethylene glycol)s generate complement activation products in human serum through increased alternative pathway turnover and a MASP-2-dependent process. Mol Immunol. 2008;46(2):225–32.

    Article  CAS  PubMed  Google Scholar 

  35. Szebeni J. Complement activation-related pseudoallergy: a new class of drug-induced acute immune toxicity. Toxicology. 2005;216(2–3):106–21.

    Article  CAS  PubMed  Google Scholar 

  36. Garbuzenko O, Zalipsky S, Qazen M, Barenholz Y. Electrostatics of PEGylated micelles and liposomes containing charged and neutral lipopolymers. Langmuir : ACS J Surf Colloids. 2005;21(6):2560–8.

    Article  Google Scholar 

  37. Moghimi SM, Hamad I, Andresen TL, Jorgensen K, Szebeni J. Methylation of the phosphate oxygen moiety of phospholipid-methoxy(polyethylene glycol) conjugate prevents PEGylated liposome-mediated complement activation and anaphylatoxin production. Faseb J. 2006;20(14):2591–3.

    Article  CAS  PubMed  Google Scholar 

  38. Blume G, Cevc G. Molecular mechanism of the lipid vesicle longevity in vivo. Biochim Biophys Acta. 1993;1146(2):157–68.

    Article  CAS  PubMed  Google Scholar 

  39. Moghimi SM, Andersen AJ, Hashemi SH, Lettiero B, Ahmadvand D, Hunter AC, et al. Complement activation cascade triggered by PEG-PL engineered nanomedicines and carbon nanotubes: the challenges ahead. J Control Release : Off J Control Release Soc. 2010;146(2):175–81.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

We gratefully thank K. Grendstad Sæterbø for help with cell culturing and S. Eggen for help with the xenografts. The work was supported by the Norwegian Cancer Society, Medical Imaging Laboratory (MI-Lab, NTNU, Norway), and the Slovak Research and Development Agency under the contract LPP-0250-09.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sjoerd Hak.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 337 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hak, S., Garaiova, Z., Olsen, L.T. et al. The Effects of oil-in-Water Nanoemulsion Polyethylene Glycol Surface Density on Intracellular Stability, Pharmacokinetics, and Biodistribution in Tumor Bearing Mice. Pharm Res 32, 1475–1485 (2015). https://doi.org/10.1007/s11095-014-1553-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1553-6

KEY WORDS

Navigation