Skip to main content

Lipid-Based Tumor-targeted Systems

  • Chapter
  • First Online:
New Nanomaterials and Techniques for Tumor-targeted Systems
  • 293 Accesses

Abstract

With the booming development of bionanotechnology, a variety of multifunctional nanoparticle platforms have been explored to facilitate drug delivery in cancer treatment. Thanks to their good biocompatibility and versatile structures, the lipid-based nanoparticles can serve as ideal candidates to carry therapeutic reagents to cancer tissues. Additionally, the natural polymeric coating of liposomes could easily fuse with cellular membrane and minimize clearance by blood circulation. To date, their composition, properties, targeting strategies, reasonable design methods, and pharmacokinetics have been extensively studied to facilitate preclinical and clinical translations. In this chapter, we will introduce the structure and function of the lipid-based nanoparticle system, and a comprehensive review of the lipid-based nanoparticle drug delivery system will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kreuter J (2007) Nanoparticles – a historical perspective. Int J Pharm 331(1):1–10

    CAS  PubMed  Google Scholar 

  2. Gregoriadis G (1976) The carrier potential of liposomes in biology and medicine. N Engl J Med 295(13):704–710

    CAS  PubMed  Google Scholar 

  3. Tran MA, Watts RJ, Robertson GP (2009) Use of liposomes as drug delivery vehicles for treatment of melanoma. Pigm Cell Melanoma Res 22(4):388–399

    CAS  Google Scholar 

  4. Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4(2):145–160

    CAS  PubMed  Google Scholar 

  5. Bangham AD, Standish MM, Watkins JC (1965) Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13(1):238–252

    CAS  PubMed  Google Scholar 

  6. Sessa G, Weissmann G (1968) Phospholipid spherules (liposomes) as a model for biological membranes. J Lipid Res 9(3):310–318

    CAS  PubMed  Google Scholar 

  7. Klausner RD, Kleinfeld AM, Hoover RL, Karnovsky MJ (1980) Lipid domains in membranes. Evidence derived from structural perturbations induced by free fatty acids and lifetime heterogeneity analysis. J Biol Chem 255(4):1286–1295

    CAS  PubMed  Google Scholar 

  8. Gregoriadis G (1995) Engineering liposomes for drug delivery: progress and problems. Trends Biotechnol 13(12):527–537

    CAS  PubMed  Google Scholar 

  9. Allen TM (1998) Liposomal drug formulations. Rationale for development and what we can expect for the future. Drugs 56(5):747–756

    CAS  PubMed  Google Scholar 

  10. Gubernator J (2011) Active methods of drug loading into liposomes: recent strategies for stable drug entrapment and increased in vivo activity. Expert Opin Drug Deliv 8(5):565–580

    CAS  PubMed  Google Scholar 

  11. Allen TM∗, Hansen CB, de Menezes DEL (1995) Pharmacokinetics of long-circulating liposomes. Adv Drug Deliv Rev 16(1–2):267–284

    Google Scholar 

  12. Lian T, Ho RJY (2011) Trends and developments in liposome drug delivery systems. J Pharm Sci 90(6):667–680

    Google Scholar 

  13. Mu LM, Ju RJ, Liu R et al (2017) Dual-functional drug liposomes in treatment of resistant cancers. Adv Drug Deliv Rev 115:46–56

    CAS  PubMed  Google Scholar 

  14. Michelia MR, Bovab R, Maginib A, Emilianib C∗ (2012) Lipid-based nanocarriers for CNS-targeted drug delivery. Recent Pat CNS Drug Discov 7(1):71–86

    Google Scholar 

  15. Senior JH (1987) Fate and behavior of liposomes in vivo: a review of controlling factors. Crit Rev Ther Drug Carrier Syst 3(2):123–193

    CAS  PubMed  Google Scholar 

  16. Mazzacuva F, Isacchi B, Bergonzi M et al (2011) Development and evaluation of conventional and PEGylated curcumin liposomes, absorption and tissue distribution studies in mice. Planta Med 77(12):87–120

    Google Scholar 

  17. Laverman P, Carstens MG, Boerman OC et al (2001) Factors affecting the accelerated blood clearance of polyethylene glycol-liposomes upon repeated injection. J Pharmacol Exp Ther 298(2):607–612

    CAS  PubMed  Google Scholar 

  18. Lv Z, Yang Y, Wang J et al (2018) Optimization of the preparation conditions of borneol-modified ginkgolide liposomes by response surface methodology and study of their blood brain barrier permeability. Molecules 23(2):303–317

    PubMed Central  Google Scholar 

  19. Yoshioka H, Goto H (1998) Inhibition adsorption of proteins on the liposome surface. US patent 5, 846, 458, 1998

    Google Scholar 

  20. Hope MJ, Mui B, Ansell S et al (1998) Cationic lipids, phosphatidylethanolamine and the intracellular delivery of polymeric, nucleic acid-based drugs. Membr Biochem 15(1):1–14

    CAS  Google Scholar 

  21. Ellens H, Bentz J, Szoka FC (1984) PH-induced destabilization of phosphatidylethanolamine-containing liposomes: role of bilayer contact. Biochemistry 23(7):1532–1538

    CAS  PubMed  Google Scholar 

  22. Miyazaki M, Yuba E∗, Hayashi H et al (2018) Hyaluronic acid-based pH-sensitive polymer-modified liposomes for cell-specific intracellular drug delivery systems. Bioconjug Chem 29(1):44–55

    Google Scholar 

  23. Xia Y, Tian J, Chen X∗ (2016) Effect of surface properties on liposomal siRNA delivery. Biomaterials 79:56–68

    Google Scholar 

  24. Dakwar GR, Braeckmans K, Demeester J et al (2015) Disregarded effect of biological fluids in siRNA delivery: human ascites fluid severely restricts cellular uptake of nanoparticles. ACS Appl Mater Interfaces 7(43):24322–24329

    CAS  PubMed  Google Scholar 

  25. Wang Y∗, Miao L, Satterlee A et al (2015) Delivery of oligonucleotides with lipid nanoparticles. Adv Drug Deliv Rev 87:68–80

    Google Scholar 

  26. Luo YL, Xu CF, Li HJ et al (2018) Macrophage-specific in vivo gene editing using cationic lipid-assisted polymeric nanoparticles. ACS Nano 12(2):994–1005

    CAS  PubMed  Google Scholar 

  27. Christensen D, Bøllehuus Hansen L, Leboux R et al (2019) A liposome-based adjuvant containing two delivery systems with the ability to induce mucosal immunoglobulin a following a parenteral immunization. ACS Nano 13(2):1116–1126

    CAS  PubMed  Google Scholar 

  28. Bume G, Cevc G (1990) Liposomes for the sustained drug release in vivo. Biochim Biophys Acta 1029(1):91–97

    Google Scholar 

  29. Lasic DD, Martin FJ, Gabizon A et al (1991) Sterically stabilized liposomes: a hypothesis on the molecular origin of the extended circulation times. Biochim Biophys Acta 1070(1):187–192

    CAS  PubMed  Google Scholar 

  30. ElBayoumi TA, Torchilin VP (2010) Liposomes methods and protocols volume 1: pharmaceutical nanocarriers. In: Tamer AE, Vladimir PT (eds) Current trends in liposome research. Springer, London, pp 1–28

    Google Scholar 

  31. Pattni BS, Chupin VV, Torchilin VP∗ (2015) New developments in liposomal drug delivery. Chem Rev 115(19):10938–10966

    Google Scholar 

  32. Yingchoncharoen P, Kalinowski DS, Richardson DR (2016) Lipid-based drug delivery systems in cancer therapy: what is available and what is yet to come. Pharm Rev 68(3):701–787

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Bangham AD (1982) Preparation of liposomes and methods for measuring their permeabilities. In: Hesketh TR, Kornberg HL, Metcalfe JC et al (eds) Technique in life science – technique in lipid and membrane biochemistry. Elsevier, Amsterdam, pp 1–25

    Google Scholar 

  34. Olson F, Hunt CA, Szoka FC et al (1979) Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes. Biochim Biophys Acta 557(1):9–23

    CAS  PubMed  Google Scholar 

  35. Vemuri S, Rhodes CT (1995) Preparation and characterization of liposomes as therapeutic delivery systems: a review. Pharm Acta Helv 70(2):95–111

    CAS  PubMed  Google Scholar 

  36. Hauser H (1982) Methods of preparation of lipid vesicles: assessment of their suitability for drug encapsulation. Trends Pharmacol Sci 3:274–277

    CAS  Google Scholar 

  37. Tyrrell DA, Heath TD, Colley CM et al (1976) New aspects of liposomes. Biochim Biophys Acta 457(3–4):259–302

    CAS  PubMed  Google Scholar 

  38. Szoka F, Papahadjopoulos D (1978) Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc Natl Acad Sci U S A 75(9):4194–4198

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Milsmann MHW, Schwendener RA, Weder HG (1978) The preparation of large single bilayer liposomes by a fast and controlled dialysis. Biochim Biophys Acta 512(1):147–155

    CAS  PubMed  Google Scholar 

  40. Enoch HG, Strittmatter P (1979) Formation and properties of 1000-A-diameter, single-bilayer phospholipid vesicles. Proc Natl Acad Sci U S A 76(1):145–149

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Gerritsen WJ, Verkley AJ, Zwaal RF et al (1978) Freeze-fracture appearance and disposition of band 3 protein from the human erythrocyte membrane in lipid vesicles. Eur J Biochem 85(1):255–261

    CAS  PubMed  Google Scholar 

  42. Huang CH (1969) Phosphatidylcholine vesicles. Formation and physical characteristics. Biochemistry 8(1):344–352

    CAS  PubMed  Google Scholar 

  43. Deamer D, Bangham AD (1976) Large volume liposomes by an ether vaporization method. Biochim Biophys Acta 443(3):629–634

    CAS  PubMed  Google Scholar 

  44. Torchilin VP (2007) Micellar nanocarriers: pharmaceutical perspectives. Pharm Res 24(1):1–16

    CAS  PubMed  Google Scholar 

  45. Edwards K, Johnsson M, Karlsson G et al (1997) Effect of polyethylene glycol-phospholipids on aggregate structure in preparations of small unilamellar liposomes. Biophys J 73(1):258–266

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lukyanov AN, Torchilin VP (2004) Micelles from lipid derivatives of water soluble polymers as delivery systems for poorly soluble drugs. Adv Drug Deliv Rev 56(9):1273–1289

    CAS  PubMed  Google Scholar 

  47. Rosen MJ, Kunjappu JT (2012) Surfactants and interfacial phenomena, 4th edn. Wiley, Hoboken

    Google Scholar 

  48. Lukyanov AN, Gao Z, Mazzola L et al (2002) Polyethylene glycol diacyl lipid micelles demonstrate increased accumulation in subcutaneous tumors in mice. Pharm Res 19(10):1424–1429

    CAS  PubMed  Google Scholar 

  49. Gao Z, Lukyanov AN, Chakilam AR et al (2003) Diacyl lipid-polymer micelles as nanocarriers for poorly soluble anticancer drugs. J Drug Target 11(2):87–92

    CAS  PubMed  Google Scholar 

  50. Wong HL, Bendayan R, Rauth AM et al (2007) Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. Adv Drug Deliv Rev 59(6):491–504

    CAS  PubMed  Google Scholar 

  51. Schwarz C, Mehnert W, Lucks JS et al (1994) Solid lipid nanoparticles (SLN) for controlled drug delivery. I. Production, characterization and sterilization. J Control Release 30(1):83–96

    CAS  Google Scholar 

  52. Wissing SA, Kayser O, Müller RH (2004) Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev 56(9):1257–1272

    CAS  PubMed  Google Scholar 

  53. Müller RH, Mäder K, Gohla S (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art. Eur J Pharm Biopharm 50(1):161–177

    PubMed  Google Scholar 

  54. Mehnert W, Mäder K (2001) Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev 47:165–196

    CAS  PubMed  Google Scholar 

  55. Gasco MR (1993) Method for producing solid lipid microspheres having a narrow size distribution. US Patent US5250236. 1991 Aug 2

    Google Scholar 

  56. Boltri L, Canal T, Esposito PA et al (1993) Lipid nanoparticles: evaluation of some critical formulation parameters. Proc Int Symp Control Release Bioact Mater 20:346–347

    Google Scholar 

  57. Sjöström B, Westesen K, Bergenståhl B (1993) Preparation of submicron drug particles in lecithin-stabilized o/w emulsions: II. Characterization of cholesteryl acetate particles. Int J Pharm 94(1–3):89–101

    Google Scholar 

  58. Westesen K, Siekmann B, Koch MHJ (1993) Investigations on the physical state of lipid nanoparticles by synchrotron radiation X-ray diffraction. Int J Pharm 93(1–3):189–199

    CAS  Google Scholar 

  59. Cavalli R, Caputo O, Gasco MR (1993) Solid lipospheres of doxorubicin and idarubicin. Int J Pharm 89(1):9–12

    Google Scholar 

  60. zurMühlen A, Schwarz C, Mehnert W (1998) Solid lipid nanoparticles (SLN) for controlled drug delivery–drug release and release mechanism. Eur J Pharm Biopharm 45(2):149–155

    Google Scholar 

  61. Hadinoto K, Sundaresan A, Cheow WS (2013) Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review. Eur J Pharm Biopharm 85(3):427–443

    CAS  PubMed  Google Scholar 

  62. Raemdonck K, Braeckmans K, Demeester J et al (2014) Merging the best of both worlds: hybrid lipid-enveloped matrix nanocomposites in drug delivery. Chem Soc Rev 43(1):444–472

    CAS  PubMed  Google Scholar 

  63. Thevenot J, Troutier AL, David L et al (2007) Steric stabilization of lipid/polymer particle assemblies by poly(ethylene glycol)-lipids. Biomacromolecules 8(11):3651–3660

    CAS  PubMed  Google Scholar 

  64. Fenart L, Casanova A, Dehouck B et al (1999) Evaluation of effect of charge and lipid coating on ability of 60-nm nanoparticles to cross an in vitro model of the blood-brain barrier. J Pharmacol Exp Ther 291(3):1017–1022

    CAS  PubMed  Google Scholar 

  65. Mieszawska AJ, Gianella A, Cormode DP et al (2012) Engineering of lipid-coated PLGA nanoparticles with a tunable payload of diagnostically active nanocrystals for medical imaging. Chem Commun 48(47):5835–5837

    CAS  Google Scholar 

  66. Messerschmidt SK, Musyanovych A, Altvater M et al (2009) Targeted lipid-coated nanoparticles: delivery of tumor necrosis factor-functionalized particles to tumor cells. J Control Release 137(1):69–77

    CAS  PubMed  Google Scholar 

  67. Hasan W, Chu K, Gullapalli A et al (2012) Delivery of multiples iRNAs using lipid coated PLGA nanoparticles for treatment of prostate cancer. Nano Lett 12(1):287–292

    CAS  PubMed  Google Scholar 

  68. Troutier AL, Delair T, Pichot C et al (2005) Physicochemical and interfacial investigation of lipid/polymer particle assemblies. Langmuir 21(4):1305–1313

    CAS  PubMed  Google Scholar 

  69. Fang RH, Aryal S, Hu CMJ et al (2010) Quick synthesis of lipid-polymer hybrid nanoparticles with low polydispersity using a single-step sonication method. Langmuir 26(22):16958–16962

    CAS  PubMed  Google Scholar 

  70. Valencia PM, Basto PA, Zhang L et al (2010) Single-step assembly of homogenous lipid-polymeric and lipid-quantum dot nanoparticles enabled by microfluidic rapid mixing. ACS Nano 4(3):1671–1679

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhang L, Chan JM, Gu FX et al (2008) Self-assembled lipid–polymer hybrid nanoparticles: a robust drug delivery platform. ACS Nano 2(8):1696–1702

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Chan JM, Zhang L, Yuet KP et al (2009) PLGA-lecithin-PEG core-shell nanoparticles for controlled drug delivery. Biomaterials 30(8):1627–1634

    CAS  PubMed  Google Scholar 

  73. Bershteyn A, Chaparro J, Yau R et al (2008) Polymer-supported lipid shells, onions, and flowers. Soft Matter 4(9):1787–1791

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Cheow WS, Hadinoto K (2011) Factors affecting drug encapsulation and stability of lipid-polymer hybrid nanoparticles. Colloids Surf B Biointerfaces 85(2):214–220

    CAS  PubMed  Google Scholar 

  75. Liu Y, Pan J, Feng SS (2010) Nanoparticles of lipid monolayer shell and biodegradable polymer core for controlled release of paclitaxel: effects of surfactants on particles size, characteristics and in vitro performance. Int J Pharm 395(1–2):243–250

    CAS  PubMed  Google Scholar 

  76. Chu CH, Wang YC, Huang HY et al (2011) Ultrafine PEG coated poly(lactic-co-glycolic acid) nanoparticles formulated by hydrophobic surfactant-assisted one-pot synthesis for biomedical applications. Nanotechnology 22(18):185601

    PubMed  Google Scholar 

  77. Wacker M (2013) Nanocarriers for intravenous injection–the long hard road to the market. Int J Pharm 457(1):50–62

    CAS  PubMed  Google Scholar 

  78. Pastorino F, Brignole C, Marimpietri D et al (2003) Vascular damage and anti-angiogenic effects of tumor vessel-targeted liposomal chemotherapy. Cancer Res 63(21):7400–7409

    CAS  PubMed  Google Scholar 

  79. Kaur S, Banerjee R (2012) Lipid-coated PLGA nanoparticles as robust siRNA delivery vehicles. Nanomedicine 7(6):803

    CAS  PubMed  Google Scholar 

  80. Tayebi L, Vashaee D, Parikh AN (2012) Stability of uni- and multillamellar spherical vesicles. Chem Phys Chem 13(1):314–322

    CAS  PubMed  Google Scholar 

  81. Pignatello R, Musumeci T, Graziano AC et al (2016) A study on liposomal encapsulation of a lipophilic prodrug of LHRH. Pharm Dev Technol 21(6):664–671

    CAS  PubMed  Google Scholar 

  82. Maestrelli F, González-Rodríguez ML, Rabasco AM et al (2006) Effect of preparation technique on the properties of liposomes encapsulating ketoprofen-cyclodextrin complexes aimed for transdermal delivery. Int J Pharm 312(1–2):53–60

    CAS  PubMed  Google Scholar 

  83. Choi HS, Liu W, Misra P et al (2007) Renal clearance of quantum dots. Nat Biotechnol 25(10):1165–1170

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Owens DE III, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307(1):93–102

    CAS  PubMed  Google Scholar 

  85. Awasthi VD, Garcia D, Goins BA et al (2003) Circulation and biodistribution profiles of long-circulating PEG-liposomes of various sizes in rabbits. Int J Pharm 253(1–2):121–132

    CAS  PubMed  Google Scholar 

  86. Wisse E, Jacobs F, Topal B et al (2008) The size of endothelial fenestrae in human liver sinusoids: implications for hepatocyte-directed gene transfer. Gene Ther 15(17):1193–1199

    CAS  PubMed  Google Scholar 

  87. Daemen T, Velinova M, Regts J et al (1997) Different intrahepatic distribution of phosphatidylglycerol and phosphatidylserine liposomes in the rat. Hepatology 26(2):416–423

    CAS  PubMed  Google Scholar 

  88. Shaw DJ, Costello B (1993) Introduction to colloid and surface chemistry: Butterworth-Heinemann. Elsevier, Oxford

    Google Scholar 

  89. Hunter RJ (1981) Zeta potential in colloid science: principles and applications, 1st edn. Academic, London

    Google Scholar 

  90. Brandhonneur N, Chevanne F, Vié V et al (2009) Specific and non-specific phagocytosis of ligand-grafted PLGA microspheres by macrophages. Eur J Pharm Sci 36(4–5):474–485

    CAS  PubMed  Google Scholar 

  91. He C, Hu Y, Yin L et al (2010) Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 31(13):3657–3666

    CAS  PubMed  Google Scholar 

  92. Davis ME, Chen ZG, Shin DM (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 7:771–782

    CAS  PubMed  Google Scholar 

  93. Liu Y, Li K, Pan J et al (2010) Folic acid conjugated nanoparticles of mixed lipid monolayer shell and biodegradable polymer core for targeted delivery of Docetaxel. Biomaterials 31(2):330–338

    CAS  PubMed  Google Scholar 

  94. Ge J, Li K, Ding D et al (2012) Lipid-PEG-Folate encapsulated nanoparticles with aggregation induced emission characteristics: cellular uptake mechanism and two-photon fluorescence imaging. Small 8(23):3655–3663

    Google Scholar 

  95. Li K, Jiang Y, Ding D et al (2011) Folic acid-functionalized two-photon absorbing nanoparticles for MCF-7 cancer cell imaging. Chem Commun 47(26):7323–7325

    CAS  Google Scholar 

  96. Gabizon A, Papahadjopoulos D (1988) Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors. Proc Natl Acad Sci U S A 85(18):6949–6953

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Williams KJ, Phillips MC, Rodrigueza WV (1998) Structural and metabolic consequences of liposome-lipoprotein interactions. Adv Drug Deliv Rev 32(1–2):31–43

    CAS  PubMed  Google Scholar 

  98. Szebeni J, Wassef NM, Spielberg H et al (1994) Complement activation in rats by liposomes and liposome-encapsulated hemoglobin: evidence for anti-lipid antibodies and alternative pathway activation. Biochem Biophys Res Commun 205(1):255–263

    CAS  PubMed  Google Scholar 

  99. Tall AR, Tabas I, Williams KJ (1986) Lipoprotein-liposome interactions. Methods Enzymol 128(4):647–657

    CAS  PubMed  Google Scholar 

  100. Sabín J, Prieto G, Ruso JM et al (2009) Interactions between DMPC liposomes and the serum blood proteins HSA and IgG. J Phys Chem B 113(6):1655–1661

    PubMed  Google Scholar 

  101. Goren D, Horowitz AT, Zalipsky S et al (1996) Targeting of stealth liposomes to erB-2 (Her/2) receptor: in vitro and in vivo studies. Br J Cancer 74(11):1749–1756

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Riviere K, Huang Z, Jerger K et al (2011) Antitumor effect of folate-targeted liposomal doxorubicin in KB tumor-bearing mice after intravenous administration. J Drug Target 19(1):14–24

    CAS  PubMed  Google Scholar 

  103. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer-chemotherapy – mechanism of tumor itropic accumulation of proteins and the antitumor agent Smancs. Cancer Res 46:6387–6392

    CAS  PubMed  Google Scholar 

  104. Ganta S, Devalapally H, Shahiwala A et al (2008) A review of stimuli responsive nanocarriers for drug and gene delivery. J Control Release 126(3):187–204

    CAS  PubMed  Google Scholar 

  105. van Vlerken LE, Duan Z, Seiden MV et al (2007) Modulation of intracellular ceramide using polymeric nanoparticles to overcome multidrug resistance in cancer. Cancer Res 67(10):4843–4850

    PubMed  Google Scholar 

  106. Noble CO, Kirpotin DB, Hayes ME et al (2004) Development of ligand-targeted liposomes for cancer therapy. Expert Opin Ther Targets 8(4):335–353

    CAS  PubMed  Google Scholar 

  107. El-Hammadi MM, Arias JL (2019) An update on liposomes in drug delivery: a patent review (2014–2018). Expert Opin Ther Pat 29(11):891–907

    CAS  PubMed  Google Scholar 

  108. Doi Y, Shimizu T, Ishima Y et al (2019) Long-term storage of PEGylated liposomal oxaliplatin with improved stability and long circulation times in vivo. Int J Pharm 564:237–243

    CAS  PubMed  Google Scholar 

  109. Hamishehkar H, Bahadori MB, Vandghanooni S et al (2018) Preparation, characterization and anti-proliferative effects of sclareol loaded solid lipid nanoparticles on A549 human lung epithelial cancer cells. J Drug Deliv Sci Tec 45:272–280

    CAS  Google Scholar 

  110. Nausicaa C, Benedetta F, Casimiro G et al (2018) Solid lipid nanoparticles carrying temozolomide for melanoma treatment. Preliminary in vitro and in vivo studies. Int J Mol Sci 19(2):255

    Google Scholar 

  111. Bae YH (2009) Drug targeting and tumor heterogeneity. J Control Release 133(1):2–3

    Article  CAS  PubMed  Google Scholar 

  112. Cho K, Wang X, Nie S et al (2008) Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 14(5):1310–1316

    Article  CAS  PubMed  Google Scholar 

  113. Danhier F, Feron O, Préat V (2010) To exploit the tumor microenvironment: passive and active tumor-targeted of nanocarriers for anti-cancer drug delivery. J Control Release 148(2):35–146

    Article  CAS  Google Scholar 

  114. Bareford LM, Swaan PW (2007) Endocytic mechanisms for targeted drug delivery. Adv Drug Deliv Rev 59(8):748–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Clague MJ, Urbé S, Aniento F et al (1994) Vacuolar ATPase activity is required for endosomal carrier vesicle formation. J Biol Chem 269(1):21–24

    CAS  PubMed  Google Scholar 

  116. Lee RJ, Wang S, Low PS (1996) Measurement of endosome pH following folate receptor-mediated endocytosis. Biochim Biophys Acta 1312(3):237–242

    Article  PubMed  Google Scholar 

  117. Nishi T, Forgac M (2002) The vacuolar (H+)-ATPases–nature’s most versatile proton pumps. Nat Rev Mol Cell Biol 3(2):94–103

    CAS  PubMed  Google Scholar 

  118. Rudenko G, Henry L, Henderson K et al (2002) Structure of the LDL receptor extracellular domain at endosomal pH. Science 298(5602):2353–2358

    CAS  PubMed  Google Scholar 

  119. Kamen BA, Smith AK (2004) A review of folate receptor alpha cycling and 5-methyltetrahydrofolate accumulation with an emphasis on cell models in vitro. Adv Drug Deliv Rev 56(8):1085–1097

    CAS  PubMed  Google Scholar 

  120. Lakadamyali M, Rust MJ, Zhuang X (2006) Ligands for clathrin-mediated endocytosis are differentially sorted into distinct populations of early endosomes. Cell 124(5):997–1009

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Weijer R, Broekgaarden M, Kos M et al (2015) Enhancing photodynamic therapy of refractory solid cancers: combining second-generation photosensitizers with multi-targeted liposomal delivery. J Photochem Photobiol Chem 23:103–131

    CAS  Google Scholar 

  122. Jain RK, Stylianopoulos T (2010) Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol 7(11):653–664

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Park JW, Hong K, Kirpotin DB et al (2002) Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery. Clin Cancer Res 8(4):1172–1181

    CAS  PubMed  Google Scholar 

  124. Orcutt KD, Rhoden JJ, Ruiz-Yi B et al (2012) Effect of small molecule binding affinity on tumor uptake in vivo. Mol Cancer Ther 11(6):1365–1372

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Juweid M, Neumann R, Paik C et al (1992) Micropharmacology of monoclonal antibodies in solid tumors: direct experimental evidence for a binding site barrier. Cancer Res 52(19):5144–5153

    CAS  PubMed  Google Scholar 

  126. Yang G, Yang T, Zhang W et al (2014) In vitro and in vivo antitumor effects of folate-targeted ursolic acid stealth liposome. J Agric Food Chem 62(10):2207–2215

    CAS  PubMed  Google Scholar 

  127. Min HK, Kim CS, Han J et al (2019) Folate receptor-targeted liposomal nanocomplex for effective synergistic photothermal-chemotherapy of breast cancer in vivo. Colloids Surf B 173:539–548

    Google Scholar 

  128. Hattori Y, Shimizu S, Ozaki K et al (2019) Effect of cationic lipid type in folate-PEG-modified cationic liposomes on folate receptor-mediated siRNA transfection in tumor cells. Pharmaceutics 11(4):181

    CAS  PubMed Central  Google Scholar 

  129. Silindir-Gunay M, Karpuz M, Ozturk N et al (2019) Radiolabeled, folate-conjugated liposomes as tumor imaging agents: formulation and in vitro evaluation. J Drug Deliv Sci Technol 50:321–328

    CAS  Google Scholar 

  130. Handali S, Moghimipour E, Kouchak M et al (2019) New folate receptor targeted nano liposomes for delivery of 5-fluorouracil to cancer cells: strong implication for enhanced potency and safety. Life Sci 227:39–50

    CAS  PubMed  Google Scholar 

  131. Kumar P, Huo P, Liu B (2019) Formulation strategies for folate-targeted liposomes and their biomedical applications. Pharmaceutics 11(8):381

    Article  CAS  PubMed Central  Google Scholar 

  132. Trinder D, Zak O, Aisen P (1996) Transferrin receptor-independent uptake of differic transferrin by human hepatoma cells with antisense inhibition of receptor expression. Hepatology 23(6):1512–1520

    Article  CAS  PubMed  Google Scholar 

  133. Kalinowski D, Richardson DR (2005) The evolution of iron chelators for the treatment of iron overload disease and cancer. Pharmacol Rev 57(4):547–583

    Article  CAS  PubMed  Google Scholar 

  134. Prost AC, Ménégaux F, Langlois P et al (1998) Differential transferrin receptor density in human colorectal cancer: a potential probe for diagnosis and therapy. Int J Oncol 13(4):871–875

    CAS  PubMed  Google Scholar 

  135. Shinohara H, Fan D, Ozawa S et al (2000) Site-specific expression of transferrin receptor by human colon cancer cells directly correlates with eradication by antitransferrin recombinant immunotoxin. Int J Oncol 17(4):643–651

    CAS  PubMed  Google Scholar 

  136. Gomme PT, McCann KB, Bertolini J (2005) Transferrin: structure, function and potential therapeutic actions. Drug Discov Today 10(4):267–273

    Article  CAS  PubMed  Google Scholar 

  137. Daniels TR, Delgado T, Helguera G et al (2006) The transferrin receptor part II: targeted delivery of therapeutic agents into cancer cells. Clin Immunol 121(2):159–176

    Article  CAS  PubMed  Google Scholar 

  138. Chang J, Jallouli Y, Kroubi M et al (2009) Characterization of endocytosis of transferrin-coated PLGA nanoparticles by the blood-brain barrier. Int J Pharm 379(2):285–292

    Article  CAS  PubMed  Google Scholar 

  139. Ulbrich K, Hekmatara T, Herbert E et al (2009) Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood-brain barrier (BBB). Eur J Pharm Biopharm 71(2):251–256

    Article  CAS  PubMed  Google Scholar 

  140. Tang J, Wang Q, Yu Q et al (2019) A stabilized retro-inverso peptide ligand of transferrin receptor for enhanced liposome-based hepatocellular carcinoma-targeted drug delivery. Acta Biomater 83:379–389

    Article  CAS  PubMed  Google Scholar 

  141. Fu J, Li W, Xin X et al (2019) Transferrin modified nano-liposome co-delivery strategies for enhancing the cancer therapy. J Pharm Sci

    Google Scholar 

  142. Riaz MK, Zhang X, Wong KH et al (2019) Pulmonary delivery of transferrin receptors targeting peptide surface-functionalized liposomes augments the chemotherapeutic effect of quercetin in lung cancer therapy. Int J Nanomedicine 14:2879–2902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Jhaveri A, Luther E, Torchilin V (2019) The effect of transferrin-targeted, resveratrol-loaded liposomes on neurosphere cultures of glioblastoma: implications for targeting tumour-initiating cells. J Drug Targeting 27(5–6):601–613

    Article  CAS  Google Scholar 

  144. Wang Y, Yang Y, Yu Y et al (2020) Transferrin modified dioscin loaded PEGylated liposomes: characterization and in vitro antitumor effect. J Nanosci Nanotechnol 20(3):1321–1331

    Article  CAS  PubMed  Google Scholar 

  145. Li S, Zhao H, Mao X et al (2019) Transferrin receptor targeted cellular delivery of doxorubicin via a reduction-responsive peptide-drug conjugate. Pharm Res 36(12):168

    Article  CAS  PubMed  Google Scholar 

  146. dos Santos Rodrigues B, Kanekiyo T, Singh J (2019) ApoE-2 brain-targeted gene therapy through transferrin and penetratin tagged liposomal nanoparticles. Pharm Res 36(11):161

    Article  PubMed  CAS  Google Scholar 

  147. Witton CJ, Reeves JR, Going JJ et al (2003) Expression of the HER1-4 family of receptor tyrosine kinases in breast cancer. J Pathol 200(3):290–297

    Article  CAS  PubMed  Google Scholar 

  148. Abd El-Rehim DM, Pinder SE, Paish CE et al (2004) Expression and co-expression of the members of the epidermal growth factor receptor (EGFR) family in invasive breast carcinoma. Br J Cancer 91(8):1532–1542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Bossuyt V, Fadare O, Martel M et al (2005) Remarkably high frequency of EGFR expression in breast carcinomas with squamous differentiation. Int J Surg Pathol 13(4):319–327

    Article  CAS  PubMed  Google Scholar 

  150. Mamot C, Drummond DC, Noble CO et al (2005) Epidermal growth factor receptor-targeted immunoliposomes significantly enhance the efficacy of multiple anticancer drugs in vivo. Cancer Res 65(24):11631–11638

    Article  CAS  PubMed  Google Scholar 

  151. Zu Kim Y, hee Park Y, Choi HJ et al (2018) Compositions and methods related to anti-EGFR antibody drug conjugates: U.S. Patent 10,118,965[P]. 2018-11-6

    Google Scholar 

  152. Guo P, Yang J, Liu D et al (2019) Dual complementary liposomes inhibit triple-negative breast tumor progression and metastasis. Sci Adv 5(3):eaav5010

    Google Scholar 

  153. Abumanhal-Masarweh H, da Silva D, Poley M et al (2019) Tailoring the lipid composition of nanoparticles modulates their cellular uptake and affects the viability of triple negative breast cancer cells. J Control Release 307:331–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Takenaka T, Nakai S, Katayama M et al (2019) Effects of gefitinib treatment on cellular uptake of extracellular vesicles in EGFR-mutant non-small cell lung cancer cells. Int J Pharm 572:118762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Li JJ, Feng GY, Chen CC et al (2019) Biological evaluation of an EGFR targeting liposomal drug in a peritoneal tumor-bearing mouse model. J Nucl Med 60(supplement 1):1041

    Google Scholar 

  156. Deshpande PP, Biswas S, Torchilin VP (2013) Current trends in the use of liposomes for tumor-targeted. Nanomedicine (Lond) 8(9):1509–1528

    Article  CAS  Google Scholar 

  157. Kang H, O’Donoghue MB, Liu H et al (2010) A liposome-based nanostructure for aptamer directed delivery. Chem Commun 46(2):249–251

    Article  CAS  Google Scholar 

  158. Xing H, Tang L, Yang X et al (2013) Selective delivery of an anticancer drug with aptamer-functionalized liposomes to breast cancer cells in vitro and in vivo. J Mater Chem B Mater Biol Med 1(39):5288–5297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Moosavian SA, Sahebkar A (2019) Aptamer-functionalized liposomes for targeted cancer therapy. Cancer Lett 448:144–154

    Article  CAS  PubMed  Google Scholar 

  160. Hong S, Ding P, Luo Y et al (2019) Aptamer-integrated α-Gal liposomes as bispecific agents to trigger immune response for killing tumor cells. J Biomed Mater Res Part A 107(6):1176–1183

    Article  CAS  Google Scholar 

  161. Frohnmeyer E, Tuschel N, Sitz T et al (2019) Aptamer lateral flow assays for rapid and sensitive detection of cholera toxin. Analyst 144(5):1840–1849

    Article  CAS  PubMed  Google Scholar 

  162. Yang X, Zhao J, Duan S et al (2019) Enhanced cytotoxic T lymphocytes recruitment targeting tumor vasculatures by endoglin aptamer and IP-10 plasmid presenting liposome-based nanocarriers. Theranostics 9(14):4066–4083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Guo X, Dong C, Liu Q et al (2019) The sustained and targeted treatment of hemangiomas by propranolol-loaded CD133 aptamers conjugated liposomes-in-microspheres. Biomed Pharmacother 114:108823

    Article  CAS  PubMed  Google Scholar 

  164. Cheng Y, Ou Z, Li Q et al (2019) Cabazitaxel liposomes with aptamer modification enhance tumor-targeting efficacy in nude mice. Mol Med Rep 19(1):490–498

    CAS  PubMed  Google Scholar 

  165. Lammers T, Hennink WE, Storm G (2008) Tumour-targeted nanomedicines: principles and practice. Br J Cancer 99(3):392–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Denekamp J, Hobson B (1982) Endothelial-cell proliferation in experimental tumours. Br J Cancer 46(5):711–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Denekamp J (1984) Vasculature as a target for tumour therapy. Prog Appl Microcirc 4:28–38

    Article  Google Scholar 

  168. Carmeliet P (2005) VEGF as a key mediator of angiogenesis in cancer. Oncology 69(Suppl 3):4–10

    Article  CAS  PubMed  Google Scholar 

  169. Yao Y, Wang T, Liu Y et al (2019) Co-delivery of sorafenib and VEGF-siRNA via pH-sensitive liposomes for the synergistic treatment of hepatocellular carcinoma. Artif Cells Nanomed Biotechnol 47(1):1374–1383

    Article  CAS  PubMed  Google Scholar 

  170. Byrne JD, Betancourt T, Brannon-Peppas L (2008) Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 60(15):1615–1626

    Article  CAS  PubMed  Google Scholar 

  171. Hood JD, Bednarski M, Frausto R et al (2002) Tumor regression by targeted gene delivery to the neovasculature. Science 296(5577):2404–2407

    Article  CAS  PubMed  Google Scholar 

  172. Desgrosellier JS, Cheresh DA (2010) Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 10(1):9–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Tang Z, Feng W, Yang Y et al (2019) Gemcitabine-loaded RGD modified liposome for ovarian cancer: preparation, characterization and pharmacodynamic studies. Drug Des Dev Ther 13:3281–3290

    Article  CAS  Google Scholar 

  174. Li XT, Tang W, Xie HJ et al (2019) The efficacy of RGD modified liposomes loaded with vinorelbine plus tetrandrine in treating resistant brain glioma. J Liposome Res 29(1):21–34

    Article  CAS  PubMed  Google Scholar 

  175. Vihinen P, Ala-aho R, Kähäri VM (2005) Matrix metalloproteinases as therapeutic targets in cancer. Curr Cancer Drug Targets 5(3):203–220

    CAS  PubMed  Google Scholar 

  176. Genís L, Gálvez BG, Gonzalo P et al (2006) MT1-MMP: universal or particular player in angiogenesis? Cancer Metastasis Rev 25(1):77–86

    PubMed  Google Scholar 

  177. Lyu Y, Xiao Q, Yin L et al (2019) Potent delivery of an MMP inhibitor to the tumor microenvironment with thermosensitive liposomes for the suppression of metastasis and angiogenesis. Signal Transduction Targeted Ther 4(1):1–9

    CAS  Google Scholar 

  178. Andresen T L, Jensen S S, Henriksen JR et al (2019) Cationic liposomes: WIPO Patent 2019012107[P]

    Google Scholar 

  179. Seraj S, Lee J, Ahn HJ (2019) Systemic delivery of Eg5 shRNA-expressing plasmids using PEGylated DC-Chol/DOPE cationic liposome: long-term silencing and anticancer effects in vivo. Biochem Pharmacol 166:192–202

    CAS  PubMed  Google Scholar 

  180. Ichihara H, Motomura M, Matsumoto Y (2019) Therapeutic effects and anti-metastasis effects of cationic liposomes against pancreatic cancer metastasis in vitro and in vivo. Biochem Biophys Res Commun 511(3):504–509

    CAS  PubMed  Google Scholar 

  181. Zhang M, Lemay SG (2019) Interaction of anionic bulk nanobubbles with cationic liposomes: evidence for reentrant condensation. Langmuir 35(11):4146–4151

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Wui SR, Kim KS, Ryu JI et al (2019) Efficient induction of cell-mediated immunity to varicella-zoster virus glycoprotein E co-lyophilized with a cationic liposome-based adjuvant in mice. Vaccine 37(15):2131–2141

    CAS  PubMed  Google Scholar 

  183. Drummond DC, Meyer O, Hong K et al (1999) Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev 51(4):691–743

    CAS  PubMed  Google Scholar 

  184. Allen TM, Hansen CB, Menezes DLD (1995) Pharmacokinetics of long-circulating liposomes. Adv Drug Deliv Rev 16(2):267–284

    CAS  Google Scholar 

  185. Senior J, Crawley JCW, Gregoriadis G (1985) Tissue distribution of liposomes exhibiting long half-lives in the circulation after intravenous injection. Biochim Biophys Acta 839:1–8

    CAS  PubMed  Google Scholar 

  186. Ahl PL, Bhatia SK, Meers P et al (1997) Enhancement of the in vivo circulation lifetime of L-a-distearoylphosphatidylcholine liposomes: importance of liposomal aggregation versus complement opsonization. Biochim Biophys Acta 1329(2):370–382

    CAS  PubMed  Google Scholar 

  187. Gregoriadis G, Senior J (1980) The phospholipid component of small unilamellar liposomes controls the rate of clearance of entrapped solutes from the circulation. FEBS Lett 119(1):43–46

    CAS  PubMed  Google Scholar 

  188. Abra RM, Hunt CA (1981) Liposome disposition in vivo. III. Dose and vesicle-size effects. Biochim Biophys Acta 666(3):493–503

    CAS  PubMed  Google Scholar 

  189. Hwang KJ (1987) Liposome pharmacokinetics. In: Ostro MJ (ed) Liposomes: from biophysics to therapeutics. Marcel Dekker Inc, New York, pp 109–156

    Google Scholar 

  190. Allen TM, Hansen C (1991) Pharmacokinetics of stealth versus conventional liposomes: effect of dose. Biochim Biophys Acta 1068(2):133–141

    CAS  PubMed  Google Scholar 

  191. Huang SK, Mayhew E, Gilani S et al (1992) Pharmacokinetics and therapeutics of sterically stabilized liposomes in mice bearing C-26 colon carcinoma. Cancer Res 52(24):6774–6781

    CAS  PubMed  Google Scholar 

  192. Woodle MC, Lasic DD (1992) Sterically stabilized liposomes. Biochim Biophys Acta 1113(2):171–199

    CAS  PubMed  Google Scholar 

  193. Papahadjopoulos D, Allen TM, Gabizon A et al (1991) Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci U S A 88(24):11460–11464

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Gabizon A, Papahadjopoulos D (1988) Liposome formulations with prolonged circulation time in blood and enhanced uptake in tumors. Proc Natl Acad Sci U S A 85(18):6949–6953

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Gabizon A, Price DC, Huberty J et al (1990) Effect of liposome composition and other factors on the targeting of liposomes to experimental tumors: biodistribution and imaging studies. Cancer Res 50(19):6371–6378

    CAS  PubMed  Google Scholar 

  196. Fielding RM, Mukwaya G, Sandhaus RA (1998) Long circulating liposomes: old drugs, new therapeutics. J Control Release 44(1):1–9

    Google Scholar 

  197. Papahadjopoulos D, Jacobson K, Nir S et al (1973) Phase transitions in phospholipid vesicles: fluorescence polarization and permeability measurements concerning the effect of temperature and cholesterol. Biochim Biophys Acta 311(3):330–348

    CAS  PubMed  Google Scholar 

  198. Bally MB, Nayar R, Masin D et al (1990) Liposomes with entrapped doxorubicin exhibit extended blood residence times. Biochim Biophys Acta 1023(1):133–139

    CAS  PubMed  Google Scholar 

  199. van Etten EWM, van Vianen W, Tijhuis RHG et al (1995) Sterically stabilized amphotericin B-liposomes: toxicity and biodistribution in mice. J Control Release 37(1):123–129

    Google Scholar 

  200. Nosova AS, Koloskova OO, Nikonova AA et al (2019) Diversity of PEGylation methods of liposomes and their influence on RNA delivery. Med Chem Comm 10(3):369–377

    CAS  Google Scholar 

  201. Li B, Cai M, Lin L et al (2019) MRI-visible and pH-sensitive micelles loaded with doxorubicin for hepatoma treatment. Biomater Sci-UK 7(4):1529–1542

    CAS  Google Scholar 

  202. Kanamala M, Palmer BD, Ghandehari H et al (2018) PEG-benzaldehyde-hydrazone-lipid based PEG-sheddable pH-sensitive liposomes: abilities for endosomal escape and long circulation. Pharm Res-DORDR 35(8):154

    Google Scholar 

  203. Shen Z, Ye H, Kröger M et al (2018) Aggregation of polyethylene glycol polymers suppresses receptor-mediated endocytosis of PEGylated liposomes. Nanoscale 10(9):4545–4560

    CAS  PubMed  Google Scholar 

  204. Wei H, Zhao Y, Guo Y et al (2018) PEGylated self-assembled nano-bacitracin A: probing the antibacterial mechanism and real-time tracing of target delivery in vivo. ACS Appl Mater Interfaces 10(13):10688–10705

    Google Scholar 

  205. Ma K, Fu D, Liu Y et al (2018) Cancer cell targeting, controlled drug release and intracellular fate of biomimetic membrane-encapsulated drug-loaded nano-graphene oxide nanohybrids. J Mater Chem B 6(31):5080–5090

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Kang X, Chen H, Li S et al (2018) Magnesium lithospermate B loaded PEGylated solid lipid nanoparticles for improved oral bioavailability. Colloids Surf B Biointerfaces 161:597–605

    CAS  PubMed  Google Scholar 

  207. Shimizu T, Abu Lila AS, Fujita R et al (2018) A hydroxyl PEG version of PEGylated liposomes and its impact on anti-PEG IgM induction and on the accelerated clearance of PEGylated liposomes. Eur J Pharm Biopharm 127:142–149

    CAS  PubMed  Google Scholar 

  208. Kuang Y, Zhang K, Cao Y et al (2017) Hydrophobic IR-780 dye encapsulated in cRGD-conjugated solid lipid nanoparticles for NIR imaging-guided photothermal therapy. ACS Appl Mater Interfaces 9(14):12217–12226

    CAS  PubMed  Google Scholar 

  209. Porter CJH, Trevaskis NL, Charman WN (2007) Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov 6(3):231–248

    CAS  PubMed  Google Scholar 

  210. Williams H D, Ford L, Igonin A et al (2019) Unlocking the full potential of lipid-based formulations using lipophilic salt/ionic liquid forms. Adv Drug Deliv Rev

    Google Scholar 

  211. Anselmo AC, Mitragotri S (2016) Nanoparticles in the clinic. Bioeng Transl Med 1(1):10–29

    PubMed  PubMed Central  Google Scholar 

  212. Beloqui A, Solinís MÁ, Rodríguez-Gascón A et al (2016) Nanostructured lipid carriers: promising drug delivery systems for future clinics. Nanomedicine 12(1):143–161

    CAS  PubMed  Google Scholar 

  213. Desai N (2012) Challenges in development of nanoparticle-based therapeutics. AAPS J 14(2):282–295

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Susan H (2015) Lipid-based nano-delivery systems for skin delivery of drugs and bioactives. Front Pharmacol 6:219

    Google Scholar 

  215. Wagner V, Dullaart A, Bock AK et al (2006) The emerging nanomedicine landscape. Nat Biotechnol 24(10):1211–1217

    CAS  PubMed  Google Scholar 

  216. Van DVFM (2014) The emerging landscape for nanomedicine in atherosclerosis. Endocrine BioScientifica 35

    Google Scholar 

  217. Schütz CA, Juillerat-Jeanneret L, Mueller H et al (2013) Therapeutic nanoparticles in clinics and under clinical evaluation. Nanomedicine 8(3):449–467

    PubMed  Google Scholar 

  218. Mishra DK, Ruchita S, Mishra PK (2018) Lipid based nanocarriers: a translational perspective. Nanomedicine 14(7):2023–2050

    CAS  PubMed  Google Scholar 

  219. Bobo D, Robinson KJ, Islam J et al (2016) Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res 33(10):2373–2387

    CAS  PubMed  Google Scholar 

  220. Eifler AC, Thaxton CS (2011) Nanoparticle therapeutics: FDA approval, clinical trials, regulatory pathways, and case study. Methods Mol Biol 726(726):325

    CAS  PubMed  Google Scholar 

  221. Vivot A, Jacot J, Zeitoun JD et al (2017) Clinical benefit, price and approval characteristics of FDA-approved new drugs for treating advanced solid cancer, 2000–2015. Ann Oncol 28(5):1111–1116

    CAS  PubMed  Google Scholar 

  222. James ND, Coker RJ, Tomlinson D et al (1994) Liposomal doxorubicin (Doxil): an effective new treatment for Kaposi’s sarcoma in aids. Clin Oncol 6(5):294–296

    CAS  Google Scholar 

  223. Gabizon A et al (1994) Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res 54(4):987–992

    CAS  PubMed  Google Scholar 

  224. Karthik V, Yi L, Dennis N et al (2014) Pharmacokinetics and pharmacodynamics of liposomal mifamurtide in adult volunteers with mild or moderate hepatic impairment. Br J Clin Pharmacol 77(6):998–1010

    Google Scholar 

  225. Gabizon A, Shmeeda H, Barenholz Y (2003) Pharmacokinetics of pegylated liposomal doxorubicin. Clin Pharmacokinet 42(5):419

    CAS  PubMed  Google Scholar 

  226. Hattori Y, Shi L, Ding W et al (2009) Novel irinotecan-loaded liposome using phytic acid with high therapeutic efficacy for colon tumors. J Control Release 136(1):30–37

    CAS  PubMed  Google Scholar 

  227. Yingchoncharoen P, Kalinowski DS, Richardson DR (2016) Lipid-based drug delivery systems in cancer therapy: what is available and what is yet to come. Pharmacol Rev 68(3):701–787

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Babu A, Templeton AK, Munshi A et al (2014) Nanodrug delivery systems: a promising technology for detection, diagnosis, and treatment of cancer. AapsPharmscitech 15(3):709–721

    CAS  Google Scholar 

  229. Etheridge ML, Campbell SA, Erdman AG et al (2013) The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomedicine 9(1):1–14

    CAS  PubMed  Google Scholar 

  230. Ventola CL (2017) Progress in nanomedicine: approved and investigational nanodrugs. Pharm Ther 42(12):742

    Google Scholar 

  231. Min Y, Caster JM, Eblan MJ et al (2015) Clinical translation of nanomedicine. Chem Rev 115(19):11147–11190

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Lytton-Jean AKR, Kauffman KJ, Kaczmarek JC et al (2015) Cancer nanotherapeutics in clinical trials. Cancer Treat Res 166:293–322

    Article  CAS  PubMed  Google Scholar 

  233. Bolwell BJ, Cassileth PA, Gale RP (1988) High dose cytarabine: a review. Leukemia 2(5):253

    CAS  PubMed  Google Scholar 

  234. Lengfelder E, Haferlach C, Saussele S et al (2009) High dose ara-C in the treatment of newly diagnosed acute promyelocytic leukemia: long-term results of the German AMLCG. Leukemia 23(12):2248–2258

    Article  CAS  PubMed  Google Scholar 

  235. Wiernik PH, Banks PL, Case CD et al (1992) Cytarabine plus idarubicin or daunorubicin as induction and consolidation therapy for previously untreated adult patients with acute myeloid leukemia. Blood 79(2):313–319

    Article  CAS  PubMed  Google Scholar 

  236. Vogler WR, Velezgarcia E, Weiner RS et al (1992) A phase III trial comparing idarubicin and daunorubicin in combination with cytarabine in acute myelogenous leukemia: a southeastern cancer study group study. J Clin Oncol 10(7):1103–1111

    Article  CAS  PubMed  Google Scholar 

  237. Muhammad A, Champeimont J, Mayr UB et al (2012) Bacterial ghosts as carriers of protein subunit and DNA-encoded antigens for vaccine applications. Expert Rev Vaccines 11(1):97–116

    Article  CAS  PubMed  Google Scholar 

  238. Kanasty R, Dorkin JR, Vegas A et al (2013) Delivery materials for sirna therapeutics. Nat Mater 12(11):967–977

    CAS  PubMed  Google Scholar 

  239. Jin GR et al (2016) Multifunctional organic nanoparticles with aggregation induced emission (AIE) characteristics for targeted photodynamic therapy and RNA interference therapy. Chem Commun 52(13):2752–2755

    CAS  Google Scholar 

  240. Senzer N, Nemunaitis J, Nemunaitis D et al (2013) Phase I study of a systemically delivered p53 nanoparticle in advanced solid tumors. Mol Ther 21(5):1096–1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Lane DP (1995) On the regulation of the p53 tumour suppressor, and its role in the cellular response to DNA damage. Philos Trans R Soc Lond Biol 347(1319):83–87

    CAS  PubMed  Google Scholar 

  242. Yokoyama M (2005) Drug targeting with nano-sized carrier systems. J Artif Organs 8(2):77–84

    Google Scholar 

  243. Bottini M, Sacchetti C, Pietroiusti A et al (2014) Targeted nanodrugs for cancer therapy: prospects and challenges. J Nanosci Nanotechnol 14(1):98–114

    CAS  PubMed  Google Scholar 

  244. Yang HX, Qin XL et al (2019) An in vivo miRNA delivery system for restoring infarcted myocardium. ACS Nano

    Google Scholar 

  245. Nahta R, Hung MC, Esteva FJ (2004) The her-2-targeting antibodies trastuzumab and pertuzumab synergistically inhibit the survival of breast cancer cells. Cancer Res 64(7):2343–2346

    CAS  PubMed  Google Scholar 

  246. Mikhail AS, Negussie AH, Pritchard WF et al (2017) Lyso-thermosensitive liposomal doxorubicin for treatment of bladder cancer. Int J Hyperth 33(7):1–28

    Google Scholar 

  247. Yang J (2012) Stimuli-responsive drug delivery systems. Adv Drug Deliv Rev 64(11):965–966

    CAS  PubMed  Google Scholar 

  248. Yin Q, Shen J, Zhang Z et al (2013) Reversal of multidrug resistance by stimuli-responsive drug delivery systems for therapy of tumor. Adv Drug Deliv Rev 65(13–14):1699–1715

    CAS  PubMed  Google Scholar 

  249. Gu M, Wang X, Toh TB et al (2017) Applications of stimuli-responsive nanoscale drug delivery systems in translational research. Drug Discov Today 23(5):1043–1052

    PubMed  Google Scholar 

  250. Hare JI, Lammers T, Ashford MB et al (2016) Challenges and strategies in anti-cancer nanomedicine development: an industry perspective. Adv Drug Deliv Rev 108:25–38

    PubMed  Google Scholar 

  251. Moore R (2014) Challenges to nanomedicine. Springer, New York

    Google Scholar 

  252. Eliasof S, Lazarus D, Peters CG et al (2013) Correlating preclinical animal studies and human clinical trials of a multifunctional, polymeric nanoparticle. Proc Natl Acad Sci U S A 110(37):15127–15132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Malinoski FJ (2014) The nanomedicines alliance: an industry perspective on nanomedicines. Nanomedicine 10(8):1819–1820

    Article  CAS  PubMed  Google Scholar 

  254. Bregoli L, Movia D, Gavigan-Imedio JD et al (2016) Nanomedicine applied to translational oncology: a future perspective on cancer treatment. Nanomed Nanotechnol Biol Med 12(1):81–103

    Article  CAS  Google Scholar 

  255. Sharma A, Madhunapantula SRV, Robertson GP (2012) Toxicological considerations when creating nanoparticle based drugs and drug delivery systems? Expert Opin Drug Metab Toxicol 8(1):47–69

    Article  CAS  PubMed  Google Scholar 

  256. Adiseshaiah PP, Crist RM, Hook SS et al (2016) Nanomedicine strategies to overcome the pathophysiological barriers of pancreatic cancer. Nat Rev Clin Oncol 13(12):750–765

    Article  CAS  PubMed  Google Scholar 

  257. Nie S (2010) Understanding and overcoming major barriers in cancer nanomedicine. Nanomedicine 5(4):523–528

    Article  PubMed  Google Scholar 

  258. Maity AR, Stepensky D (2016) Pharmacokinetics and pharmacodynamics of nano-drug delivery systems. In: Intracellular delivery III. Springer, Cham, pp 341–362

    Chapter  Google Scholar 

  259. Sahakyan N, Haddad A, Richardson S et al (2017) Personalized nanoparticles for cancer therapy: a call for greater precision. Anti Cancer Agents Med Chem 17(8):1033–1039

    Article  CAS  Google Scholar 

  260. Onoue S, Yamada S, Chan K (2014) Nanodrugs: pharmacokinetics and safety. Int J Nanomedicine 9:1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to the funding support from the National Natural Science Foundation of China (31870991) and Thousand Young Talents Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, Y., Zhang, C., Min, T., Ping, Y., Li, K. (2020). Lipid-Based Tumor-targeted Systems. In: Huang, R., Wang, Y. (eds) New Nanomaterials and Techniques for Tumor-targeted Systems. Springer, Singapore. https://doi.org/10.1007/978-981-15-5159-8_9

Download citation

Publish with us

Policies and ethics