Skip to main content

Advertisement

Log in

Design and Antifungal Activity of Fluconazole and Nystatin Loaded Onto Silica Mesoporous

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

The emerging resistance of fungal species and the limited number of available antifungals have resulted in many efforts to design novel agents for the management of fungal infections. In the current research, fluconazole (FLU) and nystatin (NYS) were loaded onto the mesoporous material of MCM-41-NH-pydc as a new drug delivery system in order to study their antifungal activities. Fourier transform infrared spectroscopy (FTIR), x-ray diffraction (XRD), and energy-dispersive x-ray spectrometry (EDX) analyses were applied to identify MCM-41-NH-pydc before and after immobilization of FLU and NYS. Moreover, the release of FLU and NYS from MCM-41-NH-pydc was measured by high-performance liquid chromatography (HPLC). The antifungal activity of NYS/FLU-loaded mesoporous material was determined against standard/azole-resistant Candida species using the broth microdilution method according to Clinical & Laboratory Standards Institute (CLSI) guidelines. The encapsulation efficiency for FLU@MCM-41-NH-pydc and NYS@MCM-41-NH-pydc were obtained as 1000 and 250_mg/g respectively. The XRD results indicated that the crystal phase of the mesoporous material was preserved after immobilization of FLU and NYS. The FTIR spectra of FLU@MCM-41-NH-pydc and NYS@MCM-41-NH-pydc revealed successful loading. Moreover, EDX analysis confirmed the structure of FLU@MCM-41-NH-pydc. According to the results, loading the FLU onto the mesoporous material has resulted in a significant increase in the geometric mean for minimum inhibitory concentration (GM MIC), whereas no statistically significant difference was found between the GM MIC values of NYS and NYS@MCM-41-NH-pydc. The release of both loaded antifungal drugs in a pH-dependent manner and the sustained release of NYS from the mesoporous material are considerable advantages of these newly designed formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. K. Chaudhary, Int. J. Sci. Res. (IJSR), 4, 741 – 744 (2013).

    Google Scholar 

  2. F. Alizadeh, A. Khodavandi and S. Zalakian, Curr. Med. Mycol., 3, 13 – 19 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. F. Karami, S. Ranjbar, Y. Ghasemi, et al., J. Pharm. Anal., 9, 373 – 391 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  4. S. H. Hussein-Al-Ali, M. E. El Zowalaty, A. U. Kura, et al., BioMed Res. Int., 2014 (2014).

  5. A. Panáèek, M. Koláø, R. Veèeøová, et al., Biomaterials, 30, 6333 – 6340 (2009).

    Article  Google Scholar 

  6. K.-J. Kim, W. S. Sung, S.-K. Moon, et al., J. Microbiol. Biotechnol., 18, 1482 – 1484 (2008).

    CAS  PubMed  Google Scholar 

  7. M. Amiri, Z. Etemadifar, A. Daneshkazemi, et al., J. Dent. Biomater., 4, 347 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. S. Asadi Shahi, S. Roudbar Mohammadi, M. Roudbary, et al., Prog. Biomater., 8, 43 – 50 (2019).

  9. V. Bustos-Terrones, I. N. Serratos, R. Vargas, et al., ChemistryOpen, 7, 984 – 994 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. D. Molina-Manso, M. Manzano, J. C. Doadrio, et al., Int. J. Antimicrob. Agents, 40, 252 – 256 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Z. Gounani, M. A. Asadollahi, R. L. Meyer, et al., Int. J. Pharm., 537, 148 – 161 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. B. Koneru, Y. Shi, Y.-C. Wang, et al., Molecules, 20, 19690 – 19698 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. M. Y. Memar, M. Yekani, H. Ghanbari, et al., Artif. Cells Nanomed. Biotechnol., 48, 1354 – 1361 (2020).

    CAS  Google Scholar 

  14. S. Hudson, J. Cooney, and E. Magner, Angew. Chem. Int. Ed., 47, 8582 – 8594 (2008).

    Article  CAS  Google Scholar 

  15. P. P. Yang, S. L. Gai, and J. Lin, Chem. Soc. Rev., 41, 3679 – 3698 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. J. S. Beck, J. Vartuli, W. J. Roth, et al., J. Am. Chem. Soc., 114, 10834 – 10843 (1992).

    Article  CAS  Google Scholar 

  17. C. T. Kresge, M. E. Leonowicz, W. J. Roth, et al., Nature, 359, 710 (1992).

    Article  CAS  Google Scholar 

  18. F. Karami, A. Shokrollahi, and R. Razavizade, Adv. Mater. Lett., 12, 21101670 (2021).

    Article  Google Scholar 

  19. J. Yang, A. Daehler, G.W. Stevens, et al., Stud. Surf. Sci. Catal., 146, 775 – 778 (2003).

    Article  CAS  Google Scholar 

  20. A. Katiyar, L. Ji, P. G. Smirniotis, et al., Micropor. Mesopor. Mat., 80, 311 – 320 (2005).

    Article  CAS  Google Scholar 

  21. A. Popat, J. Liu, G. Q. M. Lu, et al., J. Mater. Chem., 22, 11173 – 11178 (2012).

    Article  CAS  Google Scholar 

  22. X. Hu, Y. Wang, and B. Peng, Chem. Asian. J., 9, 319 – 327 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. K. F. Lam, K. L. Yeung, and G. McKay, Environ. Sci. Technol., 41, 3329 – 3334 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. M. Algarra, M. V. Jiménez, E. Rodríguez-Castellón, et al., Chemosphere, 59, 779 – 786 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. S. Thangam, V. Sujitha, K. Vimala, et al., Toxicol. Appl. Pharmacol., 27, 232 – 243 (2014).

    Google Scholar 

  26. Z. Yuan, Z. Xin, Z. Jingwen, et al., J. Mater. Chem. B, 17, 3436 – 3446 (2015).

    Article  Google Scholar 

  27. W. C. Lage, D. Sachs, T. A. Nunes Ribeiro, et al., Micropor. Mesopor. Mat., 321, 111127 (2021).

  28. Y. Zhao, B. G. Trewyn, I. I. Slowing, et al., J. Am. Chem. Soc., 131, 8398 – 8400 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. D. S. Perlin, R. Rautemaa-Richardson, and A. Alastruey-Izquierdo, Lancet Infect. Dis., 17, e383-e392 (2017).

    Article  PubMed  Google Scholar 

  30. S. Singh, Z. Fatima, and S. Hameed, Infez. Med., 23, 211 – 223 (2015).

    PubMed  Google Scholar 

  31. S. G. Whaley, E. L. Berkow, J.M. Rybak, et al., Front. Microb., 7, articie 2173 (2017).

  32. A. Shafe, MSc thesis, Iran, Yasouj, Yasouj University (February 2018).

  33. K. Y. Ho, K. L. Yeung, and G. McKay, Langmuir, 19, 3019 (2003).

    Article  CAS  Google Scholar 

  34. M. Vallet-Regi, A. Ramila, R. Del Real, et al., Chem. Mater., 13, 308 – 311 (2001).

    Article  CAS  Google Scholar 

  35. G. Mohammadnezhad, R. Soltani, S. Abad, et al., J. Appl. Polym. Sci., 134, 45383 (2017).

    Article  Google Scholar 

  36. L. Zhang, X. Chang, Z. Hu, et al., Microchim. Acta, 168, 79 – 85 (2010).

    Article  CAS  Google Scholar 

  37. M. Sharifi, A. Shokrollahi, and F. Ebrahimi, Int. J. Environ. Anal. Chem., 1 – 19 (2021).

  38. Z. Hamzah, N. Narawi, H. M. Rasid, et al., Malaysian J. Anal. Sci., 16, 290 (2012).

    Google Scholar 

  39. J. L. Shen, Y. C. Lee, Y. L. Lui, et al., J. Phys. Condens. Matter., 15, L297 (2003).

    Article  CAS  Google Scholar 

  40. T. D. Cyr, B. A. Dawson, G. A. Neville, et al., J. Pharm. Biomed. Anal., 14, 247 – 255 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. A. Somer, J. R. Roik, M. A. Ribeiro, et al., Mater. Chem. Phys., 239, 122117 (2020).

    Article  CAS  Google Scholar 

  42. D. B. Meshram, S. B. Bagade, and M. R. Tajne, J. Chromatogr. Sci., 47, 885 – 888 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. E. Abdel-Moety, F. Khattab, K. Kelani, et al., Il Farmaco, 57, 931 – 938 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. T. Wattananat, and W. Akarawut, Biomed. Chromatogr., 20, 1 – 3 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. A. Chopra, R. Marwaha, D. Kaushik, et al., J. Pharm. Drug Deliv. Res., 3(1), 2 (2014).

    Google Scholar 

  46. H. A. El Rabey, F. M. Almutairi, A. I. Alalawy, et al., Int. J. Biol. Macromol., 141, 511 – 516 (2019).

    Article  PubMed  Google Scholar 

  47. G. Qi, L. Li, F. Yu, et al., ACS Appl. Mater. Interfaces, 5, 10874 – 10881 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ardeshir Shokrollahi or Kamiar Zomorodian.

Additional information

Ali Arabi Monfared and Forough Karami contributed equally to this research and both are considered to be the first author.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monfared, A.A., Karami, F., Shokrollahi, A. et al. Design and Antifungal Activity of Fluconazole and Nystatin Loaded Onto Silica Mesoporous. Pharm Chem J 57, 965–974 (2023). https://doi.org/10.1007/s11094-023-02972-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-023-02972-4

Keywords

Navigation