Skip to main content
Log in

Combinatorial Delivery of Cinnamaldehyde and Quercetin Ameliorates Isoproterenol-Induced Cardiac Inflammation, Apoptosis and Myocardial Infarction via Modulation of NF-kB P65 and Cleaved Caspase-3 Signaling Molecules in Wistar Rats

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Cardiovascular diseases are the most disturbing problem throughout the world. The side effects of existing drugs are continuously compelling scientists to look for some better options in terms of safety, efficacy and cost-effectiveness. Moving in this direction, we used cinnamaldehyde and quercetin combination to see its cardioprotective effect in isoproterenol-induced myocardial infarction in Wistar rats. Experimental animals were randomly divided into six groups: (I) normal saline (0.1 mL/kg, p.o.) treated group; (II) isoproterenol (ISO, 85 mg/kg, s.c.) treated group; (III—V) cinnamaldehyde (90 mg/kg/day, p.o.), quercetin (50 mg/kg/day, p.o.) and their combination [cinnamaldehyde (45 mg/kg/day, p.o) + quercetin (25 mg/kg/day, p.o.)] treated groups, respectively; (VI) per se group of the combination. Drugs were administered as a single daily dose for 15 days, with isoproterenol on 14th and 15th day of experiment. Animals were sacrificed 24 h after the last dosing, and various parameters were estimated. Subcutaneous administration of ISO in rats caused increase in cardiac malondialdehyde (MDA), CK-MB and LDH concentration as well as decreased glutathione (GSH), total antioxidant capacity (TAC) and catalase content. ISO administration further increased the expression of NF-kB and cleaved caspase 3. The level of these parameters was significantly reversed toward normal. The treatment with cinnamaldehyde + ISO and quercetin + ISO reduced the infarct size (p < 0.001), whereas cinnamaldehyde + quercetin + ISO exhibited better reduction in infarcted area (P > 0.001) than the treatment with cinnamaldehyde and quercetin individually and in combination. Thus, cinnamaldehyde and quercetin taken individually showed cardioprotection, but a combination of half their doses gave better results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. N. L. Fitriyani, M. Syafrudin, G. Alfian, and J. Rhee, IEEE Access, 8, 133034 – 133050 (2020).

    Article  Google Scholar 

  2. S. Boudina, M. N. Laclau, L. Tariosse, et al., Am. J. Physiol.: Heart Circ. Physiol., 282(3), H821 - H831 (2002).

  3. S. Takeo, G. Taam, R. Beamish, and N. S. Dhalla, J. Pharmacol. Exp. Ther., 214(3), 688 – 693 (1980).

    CAS  PubMed  Google Scholar 

  4. A. Bindoli, M. P. Rigobello, and D. J. Deeble, Free Radical Biol. Med., 13(4), 391 – 405 (1992).

    Article  CAS  Google Scholar 

  5. N. S. Dhalla, R. M. Temsah, and T. Netticadan, J. Hypertens., 18(6), 655 – 673 (2000).

    Article  CAS  Google Scholar 

  6. J. H. Doroshow, Cancer Res., 43(2), 460 – 472 (1983).

    CAS  PubMed  Google Scholar 

  7. J. C. Liao, J. S. Deng, C. S. Chiu, et al., J. Evidence-Based Complementary Altern. Med. (2012).

  8. A. J. Smith, P. Kavuru, L. Wojtas, et al., Mol. Pharmaceutics, 8(5), 1867 – 1876 (2011).

    Article  CAS  Google Scholar 

  9. H. B. Jin, Y. B. Yang, Y. L. Song, et al., Mol. Biol. Rep., 39(12), 11005 – 11009 (2012).

    Article  CAS  Google Scholar 

  10. L. L.Wan, J. Xia, D. Ye, et al., Cardiovasc. Ther., 27(1), 28 – 33 (2009).

    Article  CAS  Google Scholar 

  11. W. Krol, Z. Czuba, S. Scheller, et al., Biochem. Int., 21(4), 593 – 597 (1990).

    CAS  PubMed  Google Scholar 

  12. J. M. Chow, S. C. Shen, S. K. Huan, et al., Biochem. Pharmacol., 69(12), 1839 – 1851 (2005).

    Article  CAS  Google Scholar 

  13. X. Xiao, D. Shi, L. Liu, et al., PLoS One, 6(8), e22934 (2011).

    Article  CAS  Google Scholar 

  14. C. A. Warren, K. J. Paulhill, L. A. Davidson, et al., J. Nutr., 139(1), 101 – 105 (2008).

    Article  Google Scholar 

  15. D. Koracevic, G. Koracevic, V. Djordjevic, et al., J. Clin. Pathol., 54(5), 356 – 361 (2001).

    Article  CAS  Google Scholar 

  16. S. H. Tsung, Clin. Chem., 29(12), 2040 – 2043 (1983).

    Article  CAS  Google Scholar 

  17. G. Lum and S. R. Gambino, Am. J. Clin. Pathol., 61(1), 108 – 113 (1974).

    Article  CAS  Google Scholar 

  18. H. Ohkawa, N. Ohishi, and K. Yagi, Anal. Biochem., 95(2), 351 – 358 (1979).

    Article  CAS  Google Scholar 

  19. O. H. Lowry, J. Biol. Chem., 193, 265 – 275 (1951).

    Article  CAS  Google Scholar 

  20. J. Sedlak and R. H. Lindsay, Anal. Biochem., 25(1), 192 – 205 (1968).

    Article  CAS  Google Scholar 

  21. G. L. Ellman, Arch. Biochem. Biophys., 82(1), 70 – 77 (1959).

    Article  CAS  Google Scholar 

  22. J. Takagawa, Y. Zhang, M. L. Wong, et al., J. Appl. Physiol., 102(6), 2104 – 2111 (2007).

    Article  Google Scholar 

  23. C. Nirmala and R. Puvanakrishnan, Mol. Cell. Biochem., 159(2), 85 – 93 (1996).

    Article  CAS  Google Scholar 

  24. P. S. Tappia, T. Hata, L. Hozaima, et al., Arch. Biochem. Biophys., (1), 85 – 92 (2001).

    Article  Google Scholar 

  25. N. S. Dhalla, A. B. Elmoselhi, T. Hata, and N. Makino, Cardiovasc. Res., 47(3), 446 – 456 (2000).

    Article  CAS  Google Scholar 

  26. S. Suchalatha and C. S. Devi, Indian. J. Exp. Biol., 42(2), 174 – 178 (2004).

  27. V. S. Panda and S. R. Naik, Exp. Toxicol. Pathol., 60(4 – 5), 397 – 404 (2008).

  28. G. X. Zhang, S. Kimura, A. Nishiyama, et al., Cardiovasc. res., 65(1), 230 – 238 (2005).

    Article  CAS  Google Scholar 

  29. C. Caglayan, F. M. Kandemir, E. Darendelioðlu, et al., J. Trace Elem. Med. Biol., 56, 60 – 68 (2019).

    Article  CAS  Google Scholar 

  30. A. Iqubal, M. K. Iqubal, S. Sharma, et al., Life Sci., 218, 112 – 131 (2019).

    Article  CAS  Google Scholar 

  31. C. Caglayan, Y. Temel, F. M. Kandemir, et al., Environ. Sci. Pollut. Res., 25(21), 20968 – 20984 (2018).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The athors are thankful to Jamia Hamdard for providing facilities necessary to perform the experimental work.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Funding

This research did not receive any specific grants from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Ehtaishamul Haque.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Iqubal, A. & Haque, S.E. Combinatorial Delivery of Cinnamaldehyde and Quercetin Ameliorates Isoproterenol-Induced Cardiac Inflammation, Apoptosis and Myocardial Infarction via Modulation of NF-kB P65 and Cleaved Caspase-3 Signaling Molecules in Wistar Rats. Pharm Chem J 56, 197–205 (2022). https://doi.org/10.1007/s11094-022-02621-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-022-02621-2

Keywords

Navigation