Skip to main content

Advertisement

Log in

Comparison of the Chemical Composition and Antioxidant Activity of Essential Oils from the Leaves and Flowers of Sambucus nigra

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Essential oils of Sambucus nigra were obtained by hydrodistillation and analyzed using the GC-MS technique, which led to the identification and quantification of 66 components from the leaves and 74 components from the flowers, accounting for 94.0 and 96.4% of the total components, respectively. The main class of compounds present in the leaves were fatty acids and their derivatives: methyl linoleate, palmitic acid, hydrocarbon tritetracontane, and an aromatic compound benzoic aldehyde. In the flowers there were hydrocarbons: tritetracontane and n-hexatriacontane, fatty acids and their derivatives: palmitic acid and linoleic acid, and alcohols: 2-methyl-3,15-octadecadienol and 2-hexyl-1-octanol. Among the dominant components of the essential oil of S. nigra flowers, there were also monoterpenes such as rose oxide, epoxylinalol, while the essential oil of the leaves contained a few compounds of monoterpenes in small amounts such as β-pinene and α-pinene. Antioxidant activity of the obtained essential oils was determined by the FRAP and DPPH assay techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Harokopakis, M. H. Albzreh, E. M. Haase, et al., J. Periodontol., 77, 271 – 279 (2006).

    Article  Google Scholar 

  2. M. Wichtl and N. G. Bisset, Herbal Drugs and Phytopharmaceuticals, Medpharm Scientific Publishers, Stuttgart (1994).

    Google Scholar 

  3. A. A. M. Gray, Y. Y. H. Abdel-Wahab, and P. P. R. Flatt, J. Nutr., 130, 15 – 20 (2000).

    Article  CAS  Google Scholar 

  4. A. A. Izzo, G. di Carlo, D. Biscardi, et al., Phytother. Res., 9, 281 – 286 (1995).

    Article  Google Scholar 

  5. V. Barak, T. Halperin, and I. Kalickman, Eur. Cytokine Netw., 2, 290 – 296 (2001).

    Google Scholar 

  6. A. Chatterjee, T. Yasmin, D. Bagchi, and S. J. Stohs, Mol. Cell. Biochem., 265, 19 – 26 (2004).

    Article  CAS  Google Scholar 

  7. Z. Zakay-Rones, N. Varsano, M. Zlotnik, et al., J. Altern. Complement. Med., 1, 361 – 369 (1995).

    Article  CAS  Google Scholar 

  8. A. Askar and H. Treptow, Ernährung / Nutrition, 9, 309 – 312 (1985).

    CAS  Google Scholar 

  9. EMEA, Committee on Herbal Medicinal Products (HMPC), Assessment Report on Sambucus nigra L., fructus, EMA/ HMPC / 44208 / 2012. Based on Article 16d (1), Article 16f, and Article 16h of Directive 2001 / 83 / EC as amended (2013).

  10. B. Toulemonde and H. J. Richard, J. Agric. Food. Chem., 31, 365 – 370 (1983).

    Article  CAS  Google Scholar 

  11. D. Kalemba and A. Kunicka, Curr. Med. Chem., 10, 813 – 829 (2003).

    Article  CAS  Google Scholar 

  12. J. Reichling, P. Schnitzler, U. Suschke, and R. Saller, Res. Complement. Med., 16, 79 – 90 (2009).

    Article  Google Scholar 

  13. M. M. Ozcan and D. Arslan, Food. Chem., 129, 171 – 174 (2011).

    Article  CAS  Google Scholar 

  14. L. G. Riachi and C. A. De Maria, Food. Chem., 176, 72 – 81 (2015).

    Article  CAS  Google Scholar 

  15. H. Harada, U. Yamashita, H. Kurihara, et al., Anticancer. Res., 22, 2587 – 2590 (2002).

    CAS  PubMed  Google Scholar 

  16. E. E. Paskaleva, J. Xue, D. Y. W. Lee, et al., PLoS One, 5:e12168 (2010).

    Article  Google Scholar 

  17. E. Witkowska–Banaszczak, Acta Physiol. Plant., 35, 1421 – 1425 (2013).

    Article  Google Scholar 

  18. M. Trytek, R. Paduch, J. Fiedurek, and M. Kandefer-Szerszeń, Biotechnologia, 1, 135 – 155 (2007).

    Google Scholar 

  19. A. J. Carrillo-Muñoz, C. Tur-Tur, D. C. Cárdenes, et al., Antimicrob. Agents Chemother., 55, 4420 – 4421 (2011).

    Article  Google Scholar 

  20. I. A. Southwell, A. J. Hayes, J. Markham, and D. N. Leach, Acta Horticulture, 334, 256 – 265 (1993).

    Article  Google Scholar 

  21. S. N. Park, Y. K. Lim, M. O. Freire, et al., Anaerobe, 30, 1 – 4 (2012).

    Google Scholar 

  22. D. Trombetta, F. Castelli, M. G. Sarpietro, et al., Antimicrob. Agents Chemother., 49, 2474 – 2478 (2005).

    Article  CAS  Google Scholar 

  23. A. L. Mahmoud, Lett. Appl. Microbiol., 19, 110 – 113 (1994).

    Article  CAS  Google Scholar 

  24. R. P. Adams, Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th edn., Allured Publishing Corporation, USA (2007).

  25. M. F. Hérent, V. De Bie, and B. Tilquin, J. Pharm. Biomed. Anal., 43, 886 – 892 (2007).

    Article  Google Scholar 

  26. M. Lucero, R. Estell, M. Tellez, and E. Fredrickson, Phytochem. Anal., 20, 378 – 384 (2009).

    Article  CAS  Google Scholar 

  27. A. N. Assimopoulou, Z. Sinakos, and V. P. Papageorgiou, Phytother. Res., 19, 997 – 1000 (2005).

    Article  CAS  Google Scholar 

  28. A. P. Tiveron, P. S. Melo, K. B. Bergamaschi, et al., Int. J. Mol. Sci., 13, 8943 – 8957 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Szymański.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szymański, M., Dudek-Makuch, M., Witkowska-Banaszczak, E. et al. Comparison of the Chemical Composition and Antioxidant Activity of Essential Oils from the Leaves and Flowers of Sambucus nigra. Pharm Chem J 54, 496–503 (2020). https://doi.org/10.1007/s11094-020-02228-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-020-02228-5

Keywords

Navigation