Skip to main content
Log in

Synthesis, Antimicrobial Activity and QSAR Studies of Some New Sparfloxacin Derivatives

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

The increasing global health problem of bacterial resistance to the major classes of antibiotics is driving scientists to search for newer antimicrobial agents. The present work was designed to synthesize and evaluate the antimicrobial activities of a new series of sparfloxacin derivatives. Aseries of 22 new sparfloxacin derivatives (1 – 22) were synthesized followed by their spectral characterization and antimicrobial evaluation using serial dilution method. QSAR studies were performed to relate their antimicrobial activity and structure. The results of antimicrobial activity testing against all the three selected bacterial strains (Bacillus subtilis, Staphylococcus aureus, and Escherichia coli) indicated that compounds 21 and 22 exhibited maximum antibacterial potential among all the synthesized sparfloxacin derivatives. Compounds 6, 17, and 22 exhibited maximum antifungal potential against two fungal strains (Candida albicans and Aspergillus niger). The results of QSAR studies revealed the fact that topological parameters, particularly the valence third-order molecular connectivity index, are the major factor in influencing the antibacterial potential of the synthesized molecules. These new derivatives can offer new avenues in the design of better antimicrobial molecules active against drug-resistant bacterial and fungal strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Scheme 1.

Similar content being viewed by others

References

  1. H. Bayrak, A. Demirbas, N. Demirbas, and S. A. Karaoglu, Eur. J. Med. Chem., 44, 4362 (2009).

    Article  PubMed  CAS  Google Scholar 

  2. V. Judge, B. Narasimhan, M. Ahuja, et al., J. Balzarini, Med. Chem. Res., 21, 1451 (2012).

    Article  CAS  Google Scholar 

  3. U. K. Komarnicka, R. Starosta, K. Guz-Regner, et al., J. Mol. Str., 1096, 55 (2015).

    Article  CAS  Google Scholar 

  4. P. C. Sharma, A. Jain, and S. Jain, Acta Pol. Pharm. Drug Res., 66, 587 (2009).

    CAS  Google Scholar 

  5. P. C. Sharma, A. Jain, S. Jain, et al., J. Enzyme Inhib. Med. Chem., 25, 557 (2010).

    Article  Google Scholar 

  6. K. C. Fang, Y. L. Chen, J. Y. Sheu, et al., J. Med. Chem., 43, 3809 (2000).

    Article  PubMed  CAS  Google Scholar 

  7. N. Minovski, M. Vracko, and T. Solmajer, Mol. Divers., 15, 417 (2011).

    Article  PubMed  CAS  Google Scholar 

  8. S. Bazile, N. Moreau, D. Bouzard, and M. Essiz, Antimicrob. Agents Chemother., 36, 2622 (1992).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. G. E. D. A. A. Abuo-Rahma, H. A. Sarhan, and G. F. M. Gad, Bioorg. Med. Chem., 17, 3879 (2009).

    Article  CAS  Google Scholar 

  10. N. Sultana, A. Naz, B. Khan, et al., Med. Chem. Res., 19, 1210 (2010).

    Article  CAS  Google Scholar 

  11. S. N. Pandeya, D. Sriram, G. Nath, and E. D. Clercq, Eur. J. Med. Chem., 35, 249 (2000).

    Article  PubMed  CAS  Google Scholar 

  12. D. Sriram, P. Yogeeswari, J. S. Basha, et al., Bioorg. Med. Chem., 13, 5574 (2005).

    Article  CAS  Google Scholar 

  13. D. Sriram, A. Aubry, P. Yogeeswari, and L. M. Fisher, Bioorg. Med. Chem., 16, 2982 (2006).

    Article  CAS  Google Scholar 

  14. J. G. Cappucino abd N. Sherman, Microbiology: A Laboratory Manual, 7th edn., Pearson Education India, Delhi (2005), p. 129.

  15. Pharmacopoeia of India: Controller of Publications, Vol. I, Ministry of Health Department, Govt. of India, New Delhi (2007), p. 41.

  16. K. J. Schaper, Quant. Struct. Act. Relat., 18, 354 (1999).

    Article  CAS  Google Scholar 

  17. D. Sriram, P. Yogeeswari, and S. P. Reddy, Bioorg. Med. Chem. Lett., 16, 2113 (2006).

    Article  PubMed  CAS  Google Scholar 

  18. M. Dinakaran, P. Senthilkumar, P. Yogeeswari, et al., Bioorg. Med. Chem., 18, 1229 (2008).

    Article  CAS  Google Scholar 

  19. K. Manna and Y. K. Agrawal, Eur. J. Med. Chem., 45, 3831 (2010).

    Article  PubMed  CAS  Google Scholar 

  20. C. Hansch and T. Fujita, J. Am. Chem. Soc., 86, 1616 (1964).

    Article  CAS  Google Scholar 

  21. R. Narang, B. Narasimhan, S. Sharma, et al., Med. Chem., 9, 249 (2013).

    Article  PubMed  CAS  Google Scholar 

  22. A. Golbraikh and A. Tropsha, J. Mol. Graphics Modell., 20, 269 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Management, JCD Vidyapeeth, Sirsa (Haryana) for their support and encouragement for this research work.

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viney Lather.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Grewal, A.S., Singh, V. et al. Synthesis, Antimicrobial Activity and QSAR Studies of Some New Sparfloxacin Derivatives. Pharm Chem J 52, 444–454 (2018). https://doi.org/10.1007/s11094-018-1837-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-018-1837-y

Keywords

Navigation