Skip to main content

Advertisement

Log in

Reactive Oxygen and Nitrogen Species (RONS) Solubility Controlled Activation of Water by Atmospheric Pressure Air Spark Discharge

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The activation of water by the atmospheric pressure air plasma is involved in the diffusion of reactive oxygen and nitrogen species (RONS) in air and water, their gas-phase and liquid-phase reactions, and their dissolution and evaporation. In this study, by generating the air spark discharge over the surface of water, we have evaluated the chemical and biological reactivities of direct–plasma treatment (DPT) and remote–plasma treatment (RPT) plasma-activated water (PAW) at different water temperatures. We have found that DPT-PAW is much more effective in increasing both the chemical and biological reactivities of PAW than RPT-PAW, and decreasing the water temperature from 40 to 6 °C leads to the rapid activation of water. Our analysis shows that when the water temperature varies from 6 to 40 °C, the activation of water by the air discharge is RONS solubility controlled, and the gas-phase and liquid-phase RONS diffusion and chemical reactions are not the controlling steps during the activation of water. The direct plasma treatment of water at a relatively low temperature contributes to an obvious increase in the RONS solubility, thus a rapid activation of DPT-PAW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability statement

Data are available on request from the authors.

References

  1. Midi NS, Ohyama RI (2010) IEEE conference on electrical insulation and dielectric phenomena (CEIDP 2010), p 4

  2. Asfur M, Price C, Silverman J, Wishkerman A (2020) J Atmos Sol-Terr Phys 202:105259

    CAS  Google Scholar 

  3. Su X, Tian Y, Zhou H, Li Y, Zhang Z, Jiang B, Yang B, Zhang J, Fang J (2018) Appl Environ Microbiol 84:e02836-17

  4. Lu X, Cao Y, Yang P, Xiong Q, Xiong Z, Xian Y (2009) Y Pan TPS 37:668–673

    CAS  Google Scholar 

  5. Dubey SK, Parab S, Alexander A, Agrawal M, Achalla VPK, Pal UN, Pandey MM, Kesharwani P (2022) Process Biochem 112:112–123

    CAS  Google Scholar 

  6. Bürger I, Bibinov N, Neugebauer A, Enderle M, Awakowicz P (2017) Plasma Processes Polym 14:1600229

    Google Scholar 

  7. Yan D, Sherman JH, Keidar M (2017) Oncotarget 8:15977–15995

    PubMed  Google Scholar 

  8. Chiappim W, Sampaio A, Miranda F, Petraconi G, Silva Sobrinho A, Cardoso P, Kostov K, Koga-Ito C, Pessoa R (2021) Plasma Processes Polym 18:2100010

    CAS  Google Scholar 

  9. Tian W, Kushner MJ (2014) J Phys D Appl Phys 47:055202

    CAS  Google Scholar 

  10. Lietz AM, Kushner MJ (2016) J Phys D Appl Phys 49:425204

    Google Scholar 

  11. Zhou R, Zhou R, Wang P, Xian Y, Mai-Prochnow A, Lu X, Cullen PJ, Ostrikov K, Bazaka K (2020) J Phys D Appl Phys 53:303001

    CAS  Google Scholar 

  12. Sander R (2015) Atmos Chem Phys 15:4399–4981

    CAS  Google Scholar 

  13. Bradu C, Kutasi K, Magureanu M, Puač N, Živković S (2020) J Phys D 53:223001

    CAS  Google Scholar 

  14. Xu H, Liu D, Xia W, Chen C, Wang W, Liu Z, Wang X, Kong MG (2018) Phys Plasmas 25:13520

    Google Scholar 

  15. Kim HS, Cho YI, Hwang IH, Lee DH, Cho DJ, Rabinovich A, Fridman A (2013) Sep Purif Technol 120:423–428

    CAS  Google Scholar 

  16. Tsoukou E, Bourke P, Boehm D (2020) Water 12:3021

    CAS  Google Scholar 

  17. Wright A, Bubb WA, Hawkins CL, Davies MJ (2007) Photochem Photobiol 76:35–46

    Google Scholar 

  18. Radi R, Beckman JS, Bush KM, Freeman BA (1991) Arch Biochem Biophys 288:481–487

    CAS  PubMed  Google Scholar 

  19. Cataldo F (2006) Orig Life Evol Biosph 36:467–475

    CAS  PubMed  Google Scholar 

  20. Goldstein S, Lind J, Merenyi G (2005) Chem Rev 105:2457–2470

    CAS  PubMed  Google Scholar 

  21. Liu X, Wang Z, Li J, Wang Y, Sun Y, Dou D, Liang X, Wu J, Wang L, Xu Y, Liu D (2022) Int J Mol Sci 23:4856

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Tarabova B, Lukes P, Hammer MU, Jablonowski H, von Woedtke T, Reuter S, Machala Z (2019) Phys Chem Chem Phys 21:8883–8896

    CAS  PubMed  Google Scholar 

  23. Ikawa S, Tani A, Nakashima Y, Kitano K (2016) J Phys D Appl Phys 49:425401

    Google Scholar 

  24. Xi W, Wang W, Liu Z, Wang Z, Guo L, Wang X, Rong M, Liu D (2020) Plasma Sources Sci Technol 29:095013

    CAS  Google Scholar 

  25. Qi Z, Tian E, Song Y, Sosnin EA, Skakun VS, Li T, Xia Y, Zhao Y, Lin X, Liu D (2018) Plasma Chem Plasma Process 38:1035–1050

    CAS  Google Scholar 

  26. Chasanah U, Yulianto E, Zain AZ, Sasmita E, Restiwijaya M, Kinandana AW, Arianto F, Nur M (2019) J Phys Conf Ser 1153:12086

    CAS  Google Scholar 

  27. Lukes P, Dolezalova E, Sisrova I, Clupek M (2014) Plasma Sources Sci Technol 23:015019

    CAS  Google Scholar 

  28. Marotta E, Ceriani E, Schiorlin M, Ceretta C, Paradisi C (2012) Water Res 46:6239–6246

    CAS  PubMed  Google Scholar 

  29. Kanazawa S, Furuki T, Nakaji T, Akamine S, Ichiki R (2013) J Phys Conf Ser 418:012102

    CAS  Google Scholar 

  30. Zhou XF, Zhao ZL, Liang JP, Yuan H, Wang WC, Yang DZ (2019) Plasma Processes Polym 16:e1900001

    Google Scholar 

  31. Liu K, Duan Q, Zheng Z, Zhou R, Zhou R, Tang W, Cullen P, Ostrikov K (2021) Plasma Processes Polym 18:2100016

    CAS  Google Scholar 

  32. Nikiforov AY, Leys C, Gonzalez MA, Walsh JL (2015) Plasma Sources Sci Technol 24:034001

    Google Scholar 

  33. Bruggeman PJ, Iza F, Brandenburg R (2017) Plasma Sources Sci Technol 26:123002

    Google Scholar 

  34. Man C, Zhang C, Fang H, Zhou R, Huang B, Xu Y, Zhang X, Shao T (2022) Plasma Processes Polym 19:2200004

    CAS  Google Scholar 

  35. Ma M, Zhang Y, Lv Y, Sun F (2020) J Phys D Appl Phys 53:185207

    CAS  Google Scholar 

  36. Huang L, Guo L, Zhao P, Jing X, Zhang F, Niyazi G, Li T, Qi Y, Yan J, Jia Y, Liu D (2022) Plasma Processes Polym 20:2200110

    Google Scholar 

  37. Pawłat J, Terebun P, Kwiatkowski M, Tarabová B, Kovaľová Z, Kučerová K, Machala Z, Janda M, Hensel K (2019) Plasma Chem Plasma Process 39:627–642

    Google Scholar 

  38. Hadinoto K, Astorga JB, Masood H, Zhou R, Alam D, Cullen PJ, Prescott S, Trujillo FJ (2021) Innov Food Sci Emerg Technol 74:102867

    CAS  Google Scholar 

  39. Rahbek C, Colwell RK (2011) Nature 473:288–289

    CAS  PubMed  Google Scholar 

  40. Akishev Y, Arefi-Khonsari F, Demir A, Grushin M, Karalnik V, Petryakov A, Trushkin N (2015) Plasma Sources Sci Technol 24:065021

    Google Scholar 

  41. Tang MJ, Cox RA, Kalberer M (2014) Atmos Chem Phys 14:9233–9247

    Google Scholar 

  42. McClurkin JD, Maier DE, Ileleji KE (2013) J Stored Prod Res 55:41–47

    Google Scholar 

  43. Kenagy HS, Sparks TL, Ebben CJ, Wooldrige PJ, Lopez-Hilfiker FD, Lee BH, Thornton JA, McDuffie EE, Fibiger DL, Brown SS, Montzka DD, Weinheimer AJ, Schroder JC, Campuzano-Jost P, Day DA, Jimenez JL, Dibb JE, Campos T, Shah V, Jaeglé L, Cohen RC (2018) J Geophys Res Atmos 123:9813–9827

    CAS  Google Scholar 

  44. Liu Y, Liu D, Zhang J, Sun B, Luo S, Zhang H, Guo L, Rong M, Kong MG (2021) AIP Adv 11:055019

    Google Scholar 

Download references

Acknowledgements

This work was supported by the project 12275042 of the China Natural Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Zhiguo Zhao: Conceptualization, methodology, software, investigation, formal analysis, writing—original draft; Guoqiang Liu: Data curation, writing—original draft; Guofeng Li: Visualization, investigation; Weiyuan Ni: Resources, supervision; Dongping Liu: Conceptualization, funding acquisition, resources, supervision, writing—review and editing.

Corresponding author

Correspondence to Dongping Liu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Liu, G., Li, G. et al. Reactive Oxygen and Nitrogen Species (RONS) Solubility Controlled Activation of Water by Atmospheric Pressure Air Spark Discharge. Plasma Chem Plasma Process 44, 945–963 (2024). https://doi.org/10.1007/s11090-024-10453-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-024-10453-z

Keywords

Navigation