Skip to main content
Log in

Generation of Plasma with High Calcium Content by Electron Beam Action on Calcium Carbonate-Based and Calcium Sulfate-Based Materials

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

We have explored the generation of plasma with high content (up to 70%) of calcium ions. The plasma is formed using an electron beam bombarding solid targets with electron energy up to 20 keV and power density up to 600 W/cm2. Target materials used are simple and readily available school chalk, limescale, and gypsum building plaster. Electron-beam erosion of the target material, production of unbound calcium atoms, and their ionization occur in a single cycle at a background pressure of a few pascals. This approach minimizes the effect of target surface charging by beam electrons and provides effective ionization of calcium-containing materials. The method described here is an alternative to the conventional method for the generation of calcium ions based on electron-cyclotron resonance systems, and is technically easier to implement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ts OY, Sh AF, Bailey PD et al (2010) Synthesis of a new element with atomic number Z = 117. Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.104.142502

    Article  Google Scholar 

  2. Gigoux M, Négrel P, Guerrot C, Brigaud B, Delpech G, Pagel M, Augé T (2015) δ44Ca of stratabound fluorite deposits in Burgundy (France): tracing fluid origin and/or fractionation processes. Procedia Earth Planet Sci. https://doi.org/10.1016/j.proeps.2015.07.031

    Article  Google Scholar 

  3. Liu F, Zhang Zh, Li X, Ya An (2020) A practical guide to the double-spike technique for calcium isotope measurements by thermal ionization mass spectrometry (TIMS). Int J Mass Spectrom. https://doi.org/10.1016/j.ijms.2020.116307

    Article  Google Scholar 

  4. Jaouen K, Pons M (2017) Potential of non-traditional isotope studies for bioarchaeology. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-016-0426-9

    Article  Google Scholar 

  5. Kopáček J, Kaňa J, Bičárová S et al (2017) Climate change increasing calcium and magnesium leaching from granitic alpine catchments. Environ Sci Technol. https://doi.org/10.1021/acs.est.6b03575

    Article  Google Scholar 

  6. Tandong Y, Guangjian W, Jianchen P, Keqin J, Cuilan H (2004) Relationship between calcium and atmospheric dust recorded in Guliya ice core. Chin Sci Bull. https://doi.org/10.1007/BF03184269

    Article  Google Scholar 

  7. Smith SM, Wastney ME, Morukov BV, Larina IM et al (1999) Calcium metabolism before, during, and after a 3-mospaceflight: kinetic and biochemical changes. Am J Physiol Regul Integr Comp Physiol. https://doi.org/10.1152/ajpregu.1999.277.1.R1

    Article  Google Scholar 

  8. Jinno T, Kirk SK, Morita S, Goldberg VM (2004) Effects of calcium ion implantation on osseointegration of surface-blasted titanium alloy femoral implants in a canine total hip arthroplasty model. J Arthroplasty. https://doi.org/10.1016/j.arth.2003.10.001

    Article  Google Scholar 

  9. Boulyga SF (2010) Calcium isotope analysis by mass spectrometry. Mass Spectrom Rev. https://doi.org/10.1002/mas.20244

    Article  Google Scholar 

  10. Bucay I, Helal A, Raizen MG (2021) Surface ionization of metastable calcium atoms. AIP Adv. https://doi.org/10.1063/5.0005895

    Article  Google Scholar 

  11. Shao H, Wang M, Zeng M, Guan H, Gao K (2018) Laser ablation and two-step photo-ionization for the generation of 40Ca+. J Phys Commun. https://doi.org/10.1088/2399-6528/aad16e

    Article  Google Scholar 

  12. Gorshunov NM, Dolgolenko DA, Muromkin YuA, Potanin EP, Ustinov AL (2011) ECR sources of calcium plasma. Instrum Exp Tech. https://doi.org/10.1134/S0020441211010155

    Article  Google Scholar 

  13. Loginov VN, Bogomolov SL, Bondarchenko AE et al (2019) Production of intense beams of lithium, magnesium, phosphorus, and calcium ions by the ECR ion source at the DC-60 cyclotron. Phys Part Nucl Lett. https://doi.org/10.1134/S1547477119010096

    Article  Google Scholar 

  14. Oates T (2010) Lime and limestone. Kirk-Othmer Encycl Chem Technol. https://doi.org/10.1002/0471238961.1209130507212019.a01.pub3

    Article  Google Scholar 

  15. Mantell CL, Hardy C (1934) Calcium: its metallurgy and technology. Trans Electrochem Soc doi 10(1149/1):3498138

    Google Scholar 

  16. Doronin NA (1959) Calcium metallurgy. Atomizdat, Moscow ([in Russian])

    Google Scholar 

  17. Sokić M, Matković V, Marković B et al (2014) The possibilities of obtaining metallic calcium from serbian carbonate mineral raw materials. Chem Ind Chem Eng Q. https://doi.org/10.2298/CICEQ120817022S

    Article  Google Scholar 

  18. El-Sadek MH, El-Barawy K, Morsi I (2018) Production of calcium metal by aluminothermic reduction of Egyptian limestone ore. Can Metall Q. https://doi.org/10.1080/00084433.2018.1544343

    Article  Google Scholar 

  19. Taşyürek KC, Busğdaycı M, Yücel O (2018) Reduction conditions of metallic calcium from magnesium production residues. Metals. https://doi.org/10.3390/met8060383

    Article  Google Scholar 

  20. Jacob KT, Srikanth S (1990) Physical chemistry of the reduction of calcium oxide with aluminum in vacuum. High Temp Mater Process. https://doi.org/10.1515/HTMP.1990.9.2-4.77

    Article  Google Scholar 

  21. Nechaev AV, Polyakov EG, Kardapolov AV, Koparulina ES (2021) Prospects for metallurgical development at the chepetsky mechanical plant. Metallurgist. https://doi.org/10.1007/s11015-021-01204-y

    Article  Google Scholar 

  22. Abraham S, Bodnar R, Raines J, Wang Yu (2018) Inclusion engineering and metallurgy of calcium treatment. J Iron Steel Res Int. https://doi.org/10.1007/s42243-018-0017-3

    Article  Google Scholar 

  23. Vrana LM (2001) Calcium and calcium alloys. Kirk-Othmer Encycl Chem Technol. https://doi.org/10.1002/0471238961.0301120308090202.a01.pub2

    Article  Google Scholar 

  24. Jang H, Louis-Jean J, Childs B, Holliday K, Reilly D, Athon M, Czerwinski K, Hatchett D, Poineau F (2022) Synthetic diversity in the preparation of metallic uranium. R Soc Open Sci. https://doi.org/10.1098/rsos.211870

    Article  Google Scholar 

  25. Hooley R, Brown A, Brydson R (2019) Factors affecting electron beam damage in calcite nanoparticles. Micron. https://doi.org/10.1016/j.micron.2019.01.011

    Article  Google Scholar 

  26. Oks EM, Tyunkov AV, Yushkov YuG, Zolotukhin DB (2017) Ceramic coating deposition by electron beam evaporation. Surf Coat Technol. https://doi.org/10.1016/j.surfcoat.2017.06.042

    Article  Google Scholar 

  27. Klimov AS, Bakeev I, Oks EM, Zenin AA (2019) Forevacuum plasma source of continuous electron beam. Laser Part Beams. https://doi.org/10.1017/S0263034619000375

    Article  Google Scholar 

  28. Zenin AA, Klimov AS, Burdovitsin VA, Oks EM (2013) Generating stationary electron beams by a forevacuum plasma source at pressures up to 100 Pa. Tech Phys Lett. https://doi.org/10.1134/S1063785013050271

    Article  Google Scholar 

  29. Burdovitsin VA, Oks EM, Zolotukhin DB (2018) Effect of collector potential on the beam plasma formed by a forevacuum-pressure plasma-cathode electron beam source. J Phys D Appl Phys. https://doi.org/10.1088/1361-6463/aace4a

    Article  Google Scholar 

  30. Yushkov YuG, Oks EM, Oskomov KV, Tyunkov AV, Yakovlev EV, Yushenko AYu, Plaskeev AA, Zolotukhin DB (2020) On the effect of ceramic target composition on coatings deposited by electron-beam evaporation at forevacuum pressure. Ceram Int. https://doi.org/10.1016/j.ceramint.2020.07.259

    Article  Google Scholar 

  31. Yushkov YuG, Oks EM, Tyunkov AV, Corbella C, Zolotukhin DB (2020) Deposition of boron-containing coatings by electron-beam evaporation of boron-containing targets. Ceram Int. https://doi.org/10.1016/j.ceramint.2019.10.179

    Article  Google Scholar 

  32. Zolotukhin DB, Tyunkov AV, Yushkov YuG, Oks EM (2015) Modified quadrupole mass analyzer RGA-100 for beam plasma research in forevacuum pressure range. Rev Sci Instrum doi 10(1063/1):4937606

    Google Scholar 

  33. Rudberg E (1934) The vapor pressure of calcium between 500 and 625 ºC. Phys Rev. https://doi.org/10.1103/PhysRev.46.763

    Article  Google Scholar 

  34. Kovtun YuV (2015) Mean energy of water molecule ionization by electron impact. Tech Phys. https://doi.org/10.1134/S1063784215080162

    Article  Google Scholar 

  35. Itikawa Yu, Mason N (2005) Cross sections for electron collisions with water molecules. J Phys Chem Ref. https://doi.org/10.1063/1.1799251

    Article  Google Scholar 

  36. Srivastava N, Wang C (2011) Effects of water addition on OH radical generation and plasma properties in an atmospheric argon microwave plasma jet. J Appl Phys doi 10(1063/1):3632970

    Google Scholar 

  37. Artamonova E, Artamonova T, Beliaeva A, Gorbov D, Khodorkovskii M, Melnikov A, Michael D, Milenin V, Murashov S, Rakcheeva L, Timofeev N (2008) Low pressure water vapour discharge as a light source: I. Spectroscopic characteristics and efficiency. J Phys D: Appl Phys. https://doi.org/10.1088/0022-3727/41/15/155206

    Article  Google Scholar 

  38. Shanin MM (1967) Use of corona discharges for the study of ion-molecule reactions. J Chem Phys doi 10(1063/1):1701643

    Google Scholar 

  39. Good A, Durden DA, Kebarle P (1970) Ion–molecule reactions in pure nitrogen and nitrogen containing traces of water at total pressures 0.5–4 torr. Kinetics of clustering reactions forming H+(H2O)n. J Chem Phys. https://doi.org/10.1063/1.1672667

    Article  Google Scholar 

  40. Bopegedera AMRP, Brazier CR, Bernath PF (1988) Rotational analysis of the A2Π-X2Σ transition of calcium monoacetylide CaCCH. J Mol Spectrosc. https://doi.org/10.1016/0022-2852(88)90033-1

    Article  Google Scholar 

  41. Hiraoka K, Shoda T, Morise K, Yamabe S, Kawai E, Hirao K (1986) Stability and structure of cluster ions in the gas phase: carbon dioxide with Cl, H3O+, HCO2+, and HCO+. J Chem Phys. https://doi.org/10.1063/1.450418

    Article  Google Scholar 

  42. Rikhvanov L, Baranovskaya N, Soktoev B, Mongolina T (2011) Evaluation of drinking water according to geochemical composition of it’s salt deposition. In: 8th International conference on environmental engineering (ICEE), Vilnius. 337–342.

  43. Gushenets VI, Bugaev AS, Oks EM, Kulevoy TV, Hershcovitch A, Brown IG (2008) Experimental comparison of time-of-flight mass analysis with magnetic mass analysis. Rev of Sci Instr. https://doi.org/10.1063/1.2802593

    Article  Google Scholar 

  44. Bugaev AS, Gushenets VI, Oks EM, Savkin KP, Frolova VP, Yushkov GYu (2020) Surface modification by beams and plasma flows of boron ions generated by vacuum arc sources. In: Proceedings of the 7th international congress on energy fluxes and radiation effects (EFRE), Tomsk. https://doi.org/10.1109/EFRE47760.2020.9241918

Download references

Acknowledgements

This work has been supported by the Ministry of Science and Higher Education under the project FEWM—2020-0038. The authors express gratitude to Dr. Ian Brown (Berkeley Lab) for improving English and useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. B. Zolotukhin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savkin, K.P., Nikonenko, A.V., Tyunkov, A.V. et al. Generation of Plasma with High Calcium Content by Electron Beam Action on Calcium Carbonate-Based and Calcium Sulfate-Based Materials. Plasma Chem Plasma Process 43, 401–412 (2023). https://doi.org/10.1007/s11090-022-10296-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-022-10296-6

Keywords

Navigation