Skip to main content
Log in

Identifying Regimes During Plasma Catalytic Ammonia Synthesis

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Herein, we demonstrate that the performance of mesoporous silica SBA-15 and SBA-15-Ag during plasma ammonia synthesis depends on the plasma conditions. At high power, the mesoporous silica SBA-15 without Ag produces the largest amount of ammonia, but the addition of Ag provides a minor benefit at lower powers. Plasma conditions were analyzed through optical emission spectroscopy using N2, N2+, and NH molecular bands and Hα line. Stark broadening of Hα line was used to find electron density, and N2 molecular bands were used to assess N2 vibrational excitation, important for plasma nitrogen decomposition. At similar input conditions, reactors with SBA-15 have higher electron density and higher N2 vibrational temperature. Consistent with higher electron density, SBA-15 reactors have stronger N2+ emission intensity relative to the neutral N2. The addition of Ag results in higher N2 rotational temperature, possibly due to localized heating. From the materials point of view, SBA-15 is a more robust catalyst with good surface area retention after plasma exposure due to the lack of local heating generated when a metal is in the structure. We identify two possible regimes during ammonia synthesis, a metal and a surface-plasma driven. At lower plasma densities, the addition of metal is beneficial, while at higher power and plasma density, the best performance is achieved without the aid of a metal catalyst.

Graphical Abstract

Mesoporous materials for Plasma Catalytic Ammonia Synthesis, at certain plasma conditions lead to different regimes, a plasma/surface and a metal dominated regimes of ammonia production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Reiter AJ, Kong S-C (2011) Combustion and emissions characteristics of compression-ignition engine using dual ammonia-diesel fuel. Fuel 90(1):87–97

    CAS  Google Scholar 

  2. Carreon ML (2019) Plasma catalytic ammonia synthesis: state of the art and future directions. J Phys D Appl Phys 52(48):483001

    CAS  Google Scholar 

  3. Degnan T (2018) New catalytic developments may promote development of smaller scale ammonia plants. Focus Catalysts 1

  4. Klerke A, Christensen CH, Nørskov JK, Vegge T (2008) Ammonia for hydrogen storage: challenges and opportunities. J Mater Chem 18(20):2304–2310

    CAS  Google Scholar 

  5. Rees NV, Compton RG (2011) Carbon-free energy: a review of ammonia-and hydrazine-based electrochemical fuel cells. Energy Environ Sci 4(4):1255–1260

    CAS  Google Scholar 

  6. Wang W, Herreros JM, Tsolakis A, York APE (2013) Ammonia as hydrogen carrier for transportation; investigation of the ammonia exhaust gas fuel reforming. Int J Hydrogen Energy 38(23):9907–9917

    CAS  Google Scholar 

  7. Zamfirescu C, Dincer I (2009) Ammonia as a green fuel and hydrogen source for vehicular applications. Fuel Process Technol 90(5):729–737

    CAS  Google Scholar 

  8. Lan R, Irvine JTS, Tao S (2012) Ammonia and related chemicals as potential indirect hydrogen storage materials. Int J Hydrogen Energy 37(2):1482–1494

    CAS  Google Scholar 

  9. Cortright RD, Davda R, Dumesic JA (2002) Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 418(6901):964–967

    CAS  PubMed  Google Scholar 

  10. Christensen CH, Johannessen T, Sørensen RZ, Nørskov JK (2006) Towards an ammonia-mediated hydrogen economy? Catal Today 111(1–2):140–144

    CAS  Google Scholar 

  11. Erisman JW, Sutton MA, Galloway J, Klimont Z, Winiwarter W (2008) How a century of ammonia synthesis changed the world. Nat Geosci 1(10):636–639

    CAS  Google Scholar 

  12. Schlögl R (2008) Ammonia synthesis, Handbook of heterogeneous catalysis. Wiley-VCH2008, pp. 2501–2575

  13. Patil BS (2017) Plasma (catalyst)-assisted nitrogen fixation: reactor development for nitric oxide and ammonia production. Technische Universiteit Eindhoven, Eindhoven, pp 1–223

    Google Scholar 

  14. Tanabe Y, Nishibayashi Y (2013) Developing more sustainable processes for ammonia synthesis. Coord Chem Rev 257(17):2551–2564

    CAS  Google Scholar 

  15. http://energy.globaldata.com/media-center/press-releases/oil-and-gas/, global-ammonia-capacity-to-reach-almost-250-million-tons-per-year-by-2018-says-globaldata. 2018.

  16. Hong J, Prawer S, Murphy AB (2018) Plasma catalysis as an alternative route for ammonia production: status, mechanisms, and prospects for progress. ACS Sustain Chem Eng 6(1):15–31

    CAS  Google Scholar 

  17. Hess C, Lercher J, Naraschewski F, Kondratenko E, Baerns M, Trunschke A, Grasselli R (2011) Nanostructured catalysts: selective oxidations, Royal Society of Chemistry

  18. Shah J, Gorky F, Psarras P, Seong B, Gómez-Gualdrón DA, Carreon ML (2020) Enhancement of the yield of ammonia by hydrogen-sink effect during plasma catalysis. ChemCatChem 12(4):1200–1211

    CAS  Google Scholar 

  19. Norby T, Widerøe M, Glöckner R, Larring Y (2004) Hydrogen in oxides. Dalton Trans 19:3012–3018

    Google Scholar 

  20. Efimchenko VS, Fedotov VK, Kuzovnikov MA, Zhuravlev AS, Bulychev BM (2013) Hydrogen solubility in amorphous silica at pressures up to 75 kbar. J Phys Chem B 117(1):422–425

    CAS  PubMed  Google Scholar 

  21. Hashizume K, Ogata K, Nishikawa M, Tanabe T, Abe S, Akamaru S, Hatano Y (2013) Study on kinetics of hydrogen dissolution and hydrogen solubility in oxides using imaging plate technique. J Nucl Mater 442(1–3):S880–S884

    CAS  Google Scholar 

  22. Meletov KP, Efimchenko VS (2021) Raman study of hydrogen-saturated silica glass. Int J Hydrogen Energy

  23. Peng P, Chen P, Addy M, Cheng Y, Anderson E, Zhou N, Schiappacasse C, Zhang Y, Chen D, Hatzenbeller R, Liu Y, Ruan R (2019) Atmospheric plasma-assisted ammonia synthesis enhanced via synergistic catalytic absorption. ACS Sustain Chem Eng 7(1):100–104

    CAS  Google Scholar 

  24. Aika K (2017) Role of alkali promoter in ammonia synthesis over ruthenium catalysts—effect on reaction mechanism. Catal Today 286:14–20

    CAS  Google Scholar 

  25. Sugiyama K, Kiyoshi A, Masaaki O, Hiroshi M, Tsuneo M, N.O. (1986) Ammonia synthesis by means of plasma over MgO catalyst. Plasma Chem Plasma Process 6(2):179–193

    CAS  Google Scholar 

  26. Ozaki A (1981) Development of alkali-promoted ruthenium as a novel catalyst for ammonia synthesis. Acc Chem Res 14(1):16–21

    CAS  Google Scholar 

  27. Reddy RR, Ahammed YN, Gopal KR, Raghuram DV (1998) Optical electronegativity and refractive index of materials. Opt Mater 10(2):95–100

    CAS  Google Scholar 

  28. Suttikul T, Sreethawong T, Sekiguchi H, Chavadej S (2011) Ethylene epoxidation over alumina-and silica-supported silver catalysts in low-temperature ac dielectric barrier discharge. Plasma Chem Plasma Process 31(2):273–290

    CAS  Google Scholar 

  29. Wannagat U, The Silicon-Nitrogen Bond (1978) Biochemistry of Silicon and related Problems, Springer, Boston, pp 77–90

  30. James BD, DeSantis DA, Saur G, Hydrogen Production Pathways Cost Analysis (2013–2016), 2016, DOE-StrategicAnalysis-6231-1., Strategic Analysis Inc., Arlington, VA (United States)

  31. Taguchi A, Schüth F (2005) Ordered mesoporous materials in catalysis. Microporous Mesoporous Mater 77(1):1–45

    CAS  Google Scholar 

  32. Rao Y, Antonelli DM (2009) Mesoporous transition metal oxides: characterization and applications in heterogeneous catalysis. J Mater Chem 19(14):1937–1944

    CAS  Google Scholar 

  33. Beck JS (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 114:10834–10843

    CAS  Google Scholar 

  34. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710–712

    CAS  Google Scholar 

  35. Carreon MA, Guliants VV (2005) Ordered meso-and macroporous binary and mixed metal oxides. Eur J Inorg Chem 2005:27–43

    Google Scholar 

  36. Shah J, Wu T, Lucero J, Carreon MA, Carreon ML (2018) Nonthermal plasma synthesis of ammonia over Ni-MOF-74. ACS Sustain Chem Eng 7(1):377–383

    Google Scholar 

  37. Shah JR, Gorky F, Lucero J, Carreon MA, Carreon ML (2020) Ammonia synthesis via atmospheric plasma catalysis: zeolite 5A, a case of study. Ind Eng Chem Res 59(11):5167–5176

    CAS  Google Scholar 

  38. Gorky F, Carreon MA, Carreon ML (2020) Experimental strategies to increase ammonia yield in plasma catalysis over LTA and BEA zeolites. IOP SciNotes 1(2):024801

    Google Scholar 

  39. Gorky F, Guthrie SR, Smoljan CS, Crawford JM, Carreon MA, Carreon ML (2021) Plasma ammonia synthesis over mesoporous silica SBA-15. J Phys D 54(26):264003

    CAS  Google Scholar 

  40. vanʻt Veer K, Reniers F, Bogaerts A (2020) Zero-dimensional modeling of unpacked and packed bed dielectric barrier discharges: the role of vibrational kinetics in ammonia synthesis. Plasma Sources Sci Technol 29(4):045020

    Google Scholar 

  41. Brandenburg R (2017) Dielectric barrier discharges: progress on plasma sources and on the understanding of regimes and single filaments. Plasma Sources Sci Technol 26(5):053001

    Google Scholar 

  42. Gao M, Zhang Y, Wang H, Guo B, Zhang Q, Bogaerts A (2018) Mode transition of filaments in packed-bed dielectric barrier discharges. Catalysts 8(6):248

    Google Scholar 

  43. Hala A (2018) Plasma dynamics in a packed bed dielectric barrier discharge (DBD) operated in helium. J Phys D Appl Phys 51(11):11LT02

    Google Scholar 

  44. Kruszelnicki J, Hala A, Kushner MJ (2020) Formation of surface ionization waves in a plasma enhanced packed bed reactor for catalysis applications. Chem Eng J 382:123038

    Google Scholar 

  45. Engeling KW, Kruszelnicki J, Kushner MJ, Foster JE (2018) Time-resolved evolution of micro-discharges, surface ionization waves and plasma propagation in a two-dimensional packed bed reactor. Plasma Sources Sci Technol 27(8):085002

    Google Scholar 

  46. Cheng H, Ma M, Zhang Y, Liu D, Lu X (2020) The plasma enhanced surface reactions in a packed bed dielectric barrier discharge reactor. J Phys D Appl Phys 53(14):144001

    CAS  Google Scholar 

  47. Li Y, Yang D-Z, Qiao J-J, Zhang L, Wang W-Z, Zhao Z-L, Zhou X-F, Yuan H, Wang W-C (2020) The dynamic evolution and interaction with dielectric material of the discharge in packed bed reactor. Plasma Sources Sci Technol 29(5):055004

    CAS  Google Scholar 

  48. Shah J, Wang W, Bogaerts A, Carreon ML (2018) Ammonia synthesis by radio frequency plasma catalysis: revealing the underlying mechanisms. ACS Appl Energy Mater 1(9):4824–4839

    CAS  Google Scholar 

  49. Dongyuan Z, Sun J, Li Q, Stucky GD (2000) Morphological control of highly ordered mesoporous silica SBA-15. Chem Mater 12:275–279

    Google Scholar 

  50. Crawford JM, Anderson R, Gasvoda RJ, Kovach NC, Smoljan CS, Jasinski JB, Trewyn BG, Agarwal S, Gómez-Gualdrón DA, Carreon MA (2020) Vacancy healing as a desorption tool: oxygen triggered removal of stored ammonia from NiO1–x/MOR validated by experiments and simulations. ACS Appl Energy Mater 3(9):8233–8239

    CAS  Google Scholar 

  51. Gorky F, Lucero JM, Crawford JM, Blake B, Carreon MA, Carreon ML (2021) Plasma-induced catalytic conversion of nitrogen and hydrogen to ammonia over zeolitic imidazolate frameworks ZIF-8 and ZIF-67. ACS Appl Mater Interfaces 13(18):21338–21348

    CAS  PubMed  Google Scholar 

  52. Hong T, De León F (2015) Lissajous curve methods for the identification of nonlinear circuits: calculation of a physical consistent reactive power. IEEE Trans Circuits Syst I Regul Pap 62(12):2874–2885

    Google Scholar 

  53. Peeters FJJ, Van de Sanden MCM (2014) The influence of partial surface discharging on the electrical characterization of DBDs. Plasma Sources Sci Technol 24(1):015016

    Google Scholar 

  54. Gordon IE, Rothman LS, Hargreaves RJ, Hashemi R, Karlovets EV, Skinner FM, Conway EK, Hill C, Kochanov RV, Tan Y (2021) The HITRAN2020 molecular spectroscopic database. J Quant Spectroscopy Radiat Transf 107949

  55. LCO, Optical Diagnostics and Collisional-Radiative Models, June 30 – July 3, 2008, VKI Course on Hypersonic Entry and Cruise Vehicles, Stanford University.

  56. Pearse RWB, Gaydon AG (1976) The identification of molecular spectra. Chapman and Hall, London

  57. Belostotskiy SG, Ouk T, Donnelly VM, Economou DJ, Sadeghi N (2010) Gas temperature and electron density profiles in an argon dc microdischarge measured by optical emission spectroscopy. J Appl Phys 107(5):053305

    Google Scholar 

  58. Mijatović Z, Djurović S, Gavanski L, Gajo T, Favre A, Morel V, Bultel A (2020) Plasma density determination by using hydrogen Balmer Hα spectral line with improved accuracy. Spectrochim Acta Part B Atom Spectrosc 166:105–821

    Google Scholar 

  59. Gigosos MA, Gonzalez MA, Cardenoso V (2003) Computer simulated Balmer-alpha,-beta and-gamma Stark line profiles for non-equilibrium plasmas diagnostics. Spectrochim Acta, Part B 58(8):1489–1504

    Google Scholar 

  60. Gigosos MA, Cardeñoso V (1996) New plasma diagnosis tables of hydrogen Stark broadening including ion dynamics. J Phys B: At Mol Opt Phys 29(20):4795

    CAS  Google Scholar 

  61. Van der Horst RM, Verreycken T, Van Veldhuizen EM, Bruggeman PJ (2012) Time-resolved optical emission spectroscopy of nanosecond pulsed discharges in atmospheric-pressure N2 and N2/H2O mixtures. J Phys D Appl Phys 45(34):345201

    Google Scholar 

  62. Kepple P, Griem HR (1968) Improved Stark profile calculations for the hydrogen lines Hα, Hβ, Hγ, and Hδ. Phys Rev 173(1):317

    CAS  Google Scholar 

  63. Griem HR (1966) Plasma spectroscopy. Mc Graw‐Hill, New York (1964), Spectral Line Broadening by Plasmas

  64. Drake GWF (2006) Atomic, molecular and optical physics. Springer, New York

  65. Iwamoto M, Akiyama M, Aihara K, Deguchi T (2017) Ammonia synthesis on wool-like Au, Pt, Pd, Ag, or Cu electrode catalysts in nonthermal atmospheric-pressure plasma of N2 and H2. ACS Catal 7(10):6924–6929

    CAS  Google Scholar 

  66. Liu T-W, Gorky F, Carreon ML, Gómez-Gualdrón DA (2022) Energetics of reaction pathways enabled by N and H radicals during catalytic, plasma-assisted NH3 synthesis. ACS Sustain Chem Eng

  67. Patil BS, Cherkasov N, Srinath NV, Lang J, Ibhadon AO, Wang Q, Hessel V (2021) The role of heterogeneous catalysts in the plasma-catalytic ammonia synthesis. Catal Today 362:2–10

    CAS  Google Scholar 

  68. Barboun P, Mehta P, Herrera FA, Go DB, Schneider WF, Hicks JC (2019) Distinguishing plasma contributions to catalyst performance in plasma-assisted ammonia synthesis. ACS Sustain Chem Eng 7(9):8621–8630

    CAS  Google Scholar 

  69. Pipa AV, Brandenburg R (2019) The equivalent circuit approach for the electrical diagnostics of dielectric barrier discharges: the classical theory and recent developments. Atoms 7(1):14

    Google Scholar 

  70. Baskaran S, Liu J, Domansky K, Kohler N, Li X, Coyle C, Fryxell GE, Thevuthasan S, Williford RE (2000) Low dielectric constant mesoporous silica films through molecularly templated synthesis. Adv Mater 12(4):291–294

    CAS  Google Scholar 

  71. Wang Y, Craven M, Yu X, Ding J, Bryant P, Huang J, Tu X (2019) Plasma-Enhanced catalytic synthesis of ammonia over a Ni/Al2O3 catalyst at near-room temperature: insights into the importance of the catalyst surface on the reaction mechanism. ACS Catal. https://doi.org/10.1021/acscatal.9b02538)

    Article  PubMed  PubMed Central  Google Scholar 

  72. Gorky F, Best A, Jasinski J, Allen BJ, Alba-Rubio AC, Carreon ML (2021) Plasma catalytic ammonia synthesis on Ni nanoparticles: the size effect. J Catal 393:369–380

    CAS  Google Scholar 

  73. Wu D, Yao L, Ricci M, Li J, Xie R, Peng Z (2021) Ambient synthesis of pt-reactive metal alloy and high-entropy alloy nanocatalysts utilizing hydrogen cold plasma. Chem Mater

  74. Lu X, Naidis GV, Laroussi M, Reuter S, Graves DB, Ostrikov K (2016) Reactive species in non-equilibrium atmospheric-pressure plasmas: generation, transport, and biological effects. Phys Rep 630:1–84

    CAS  Google Scholar 

  75. Neyts EC, Ostrikov K, Sunkara MK, Bogaerts A (2015) Plasma catalysis: synergistic effects at the nanoscale. Chem Rev 115(24):13408–13446

    CAS  PubMed  Google Scholar 

  76. Mehta P, Barboun P, Herrera FA, Kim J, Rumbach P, Go DB, Hicks JC, Schneider WF (2018) Overcoming ammonia synthesis scaling relations with plasma-enabled. Catalysis 1(4):269–275

    Google Scholar 

Download references

Acknowledgements

The work by SG and HF was supported by the Princeton Collaborative Research Facility (PCRF), which is supported by the U.S. Department of Energy (DOE) under Contract No. DE-AC02-09CH11466. The work by MLC and FG was supported by DOE, Office of Science Fusion Energy Sciences Award No. DE-SC0021309. All plasma diagnostic resources used in this work were provided by the PCRF. MLC wants to thank Dr. Jacek Jasinski for his help with the collected TEM images and insightful discussion about the same.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria L. Carreon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7654 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gershman, S., Fetsch, H., Gorky, F. et al. Identifying Regimes During Plasma Catalytic Ammonia Synthesis. Plasma Chem Plasma Process 42, 731–757 (2022). https://doi.org/10.1007/s11090-022-10258-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-022-10258-y

Keywords

Navigation