Skip to main content
Log in

Quantitative Schlieren Diagnostics Applied to a Millisecond Pulsed-DC Hybrid Discharge in Atmospheric Pressure Air

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The gas temperature of a hybrid discharge in atmospheric pressure air is investigated by using quantitative schlieren imaging. The discharge is stabilized in a pin-to-plate electrode geometry and operated in a millisecond pulsed-DC regime with current amplitudes up to 75 mA and a duration of 10 ms, applied at a frequency of 100 Hz. An equilibrium composition model is considered to account for the production of N, O, and NO, which influence the Gladstone–Dale coefficient of air at high-gas temperatures. Also, a procedure is described which allows the determination of the errors introduced in the time-average gas refraction index due to gas temperature fluctuations. The results show that the axial values of the gas temperature profiles span a large range from ~ 1000 to 5000 K, nearly following the evolution of the discharge current. The temperature values found agree well with those reported in the literature for atmospheric pressure air plasmas, ranging from micro-glow to hybrid discharges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bruggeman PJ, Iza F, Brandenburg R (2017) Plasma Sources Sci Technol 26:123002. https://doi.org/10.1088/1361-6595/aa97af

    Article  CAS  Google Scholar 

  2. Adamovich I et al (2017) J Phys D Appl Phys 50:323001. https://doi.org/10.1088/1361-6463/aa76f5

    Article  CAS  Google Scholar 

  3. Machala Z, Janda M, Hensel K, Jedlovsky I, Lestinska L, Foltin V, Martisovits V, Morvova M (2007) J Mol Spectrosc 243(2):194–201. https://doi.org/10.1016/j.jms.2007.03.001

    Article  CAS  Google Scholar 

  4. Staack D, Farouk B, Gutsol A, Fridman A (2008) Plasma Sources Sci Technol 17:025013. https://doi.org/10.1088/0963-0252/17/2/025013

    Article  CAS  Google Scholar 

  5. Staack D, Farouk B, Gutsol A, Fridman A (2005) Plasma Sources Sci Technol 14:700–711. https://doi.org/10.1088/0963-0252/14/4/009

    Article  CAS  Google Scholar 

  6. Prevosto L, Kelly H, Mancinelli B, Chamorro JC, Cejas E (2015) Phys Plasmas 22:023504. https://doi.org/10.1063/1.4907661

    Article  CAS  Google Scholar 

  7. Kong C, Li Z, Alden M, Ehn A (2020) J Phys D Appl Phys 53:085502. https://doi.org/10.1088/1361-6463/ab586f

    Article  CAS  Google Scholar 

  8. Giuliani L, Xaubet M, Grondona D, Minotti F, Kelly H (2013) Phys Plasmas 20:063505. https://doi.org/10.1063/1.4812463

    Article  CAS  Google Scholar 

  9. Raizer Y (1991) Gas discharge physics. Springer, Berlin

    Book  Google Scholar 

  10. Adams SF, Caplinger JE, Sommers BS (2015) Plasma Sources Sci Technol 24:025031. https://doi.org/10.1088/0963-0252/24/2/025031

    Article  CAS  Google Scholar 

  11. Settles GS (2001) Schlieren and Shadowgraph Techniques. Springer, Berlin

    Book  Google Scholar 

  12. Traldi E, Boselli M, Simoncelli E, Stancampiano A, Gherardi M, Colombo V, Settles GS (2018) EPJ Tech Instrum 5:4. https://doi.org/10.1140/epjti/s40485-018-0045-1

    Article  Google Scholar 

  13. Schmidt-Bleker A, Reuter S, Weltmann KD (2015) J Phys D Appl Phys 48:175202. https://doi.org/10.1088/0022-3727/48/17/175202

    Article  CAS  Google Scholar 

  14. Schäfer J, Foest R, Reuter S, Kewitz T, Šperka J, Weltmann K-D (2012) Rev Sci Instrum 83:103506. https://doi.org/10.1063/1.4761924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xiong Q, Xu L, Wang X, Xiong L, Huang Q, Chen Q, Wang J, Peng W, Li J (2018) J Phys D Appl Phys 51:095207. https://doi.org/10.1088/1361-6463/aaa882

    Article  CAS  Google Scholar 

  16. Gambling WA, Edels H (1954) Br J Appl Phys 5:36. https://doi.org/10.1088/0508-3443/5/1/309

    Article  Google Scholar 

  17. Zhu Y, Zhang Y, Xiao W, Hu Y, Wang D, Zhao X, Ye X (2016) Optik 127:1471–1473. https://doi.org/10.1016/j.ijleo.2015.11.005

    Article  Google Scholar 

  18. Hargather MJ, Settles GS (2012) Opt Lasers Eng 50:8–17. https://doi.org/10.1016/j.optlaseng.2011.05.012

    Article  Google Scholar 

  19. Chamorro JC, Prevosto L, Cejas E, Kelly H (2018) IEEE Trans Plasma Sci 47(1):473–482. https://doi.org/10.1109/TPS.2018.2869031

    Article  Google Scholar 

  20. Vasilev LA (1971) Schlieren methods. Keter Inc, New York

    Google Scholar 

  21. Benilov MS, Naidis GV (2003) J Phys D Appl Phys 36:1834–1841. https://doi.org/10.1088/0022-3727/36/15/314

    Article  CAS  Google Scholar 

  22. Macheret SO, Rich JW (1993) Chem Phys 174(1):25–43. https://doi.org/10.1016/0301-0104(93)80049-F

    Article  CAS  Google Scholar 

  23. Machala Z, Marode E, Laux CO, Kruger CH (2004) J Adv Oxid Technol 7:133–137. https://doi.org/10.1515/jaots-2004-0206

    Article  Google Scholar 

  24. Alpher RA, White DR (1959) Phys Fluids 2:153–161. https://doi.org/10.1063/1.1705906

    Article  CAS  Google Scholar 

  25. Levitan YS (1996) IEEE Trans Plasma Sci 24(1):137–142. https://doi.org/10.1109/27.491750

    Article  Google Scholar 

  26. Chien YK, Benenson DM (1980) IEEE Trans Plasma Sci 8(4):411–417. https://doi.org/10.1109/TPS.1980.4317349

    Article  Google Scholar 

  27. Prevosto L, Kelly H, Mancinelli B (2013) Rev Sci Instrum 84:123506. https://doi.org/10.1063/1.4848916

    Article  CAS  PubMed  Google Scholar 

  28. Demetriades A (1964) AIAA J 2:1347–1349. https://doi.org/10.2514/3.2553

    Article  Google Scholar 

  29. Akishev Y, Grushin M, Karalnik V, Petryakov A, Trushkin N (2010) J Phys D Appl Phys 43:075202. https://doi.org/10.1088/0022-3727/43/7/075202

    Article  CAS  Google Scholar 

  30. Naidis GV (2007) Plasma Sources Sci Technol 16:297–303. https://doi.org/10.1088/0963-0252/16/2/012

    Article  Google Scholar 

  31. Pellerin S, Richard F, Chapelle J, Cormier JM, Musiol K (2000) J Phys D Appl Phys 33:2407. https://doi.org/10.1088/0022-3727/33/19/311

    Article  CAS  Google Scholar 

  32. Cejas E, Mancinelli B, Prevosto L (2020) Plasma 3(1):12–26. https://doi.org/10.3390/plasma3010003

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Universidad Tecnológica Nacional (grants PID 5447 and PID 5418), Agencia Nacional de Promoción Científica y Tecnológica (Grant PICT 2018–00702) and CONICET (PIP 2021–2023 GI). L.P is member of the CONICET. E.C. thanks CONICET for their doctoral fellowships. J.C.C. thanks CONICET for his postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Cejas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cejas, E., Chamorro, J.C. & Prevosto, L. Quantitative Schlieren Diagnostics Applied to a Millisecond Pulsed-DC Hybrid Discharge in Atmospheric Pressure Air. Plasma Chem Plasma Process 42, 657–670 (2022). https://doi.org/10.1007/s11090-022-10233-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-022-10233-7

Keyworks

Navigation