Skip to main content

Advertisement

Log in

Scaling Up of Non-Thermal Gliding Arc Plasma Systems for Industrial Applications

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Scaling up of transitional “warm” plasmas to industrial level gives possibility to develop plasma systems that combine advantages of thermal and non thermal discharges such as low temperature and high process selectivity (compare to thermal plasma) at high pressure and average power density. Non-equilibrium “cold” gliding arcs (with observation of equilibrium to non equilibrium transition) has been demonstrated at power level 2–3 kW and proved to be a highly efficient plasma stimulators of several plasma chemical and plasma catalytic processes, including hydrogen/syngas generation from biomass, coal and organic wastes, exhaust gas cleaning, fuel desulfurization and water cleaning from emerging contaminants. The gliding arc evolution includes initial micro-arc phase with fast transition to transient non-equilibrium phase with elevated electric field, low gas and high electron temperatures, as well as selective generation of active species typical for cold plasmas. The paper will describe experimentally achieved scaling up of the non-equilibrium gliding arc discharges to the level of 10–15 kW, as well as theoretical scaling up limitations of this powerful non-equilibrium plasma systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig.8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Kaske G, Kerke L, Muller R (1986) Hydrogen production in huls plasma reforming process. Hydrogen Energy Progress VI:1

    Google Scholar 

  2. Lunum S, Hildrum R, Hox K, Hugbald J (1998) Kvaerner based technologies for environmentally friendly energy and hydrogen production. In: Proc. 12th world hydrogen energy conference, Buenos Aires, pp 637–645

  3. Fridman A (2008) Plasma chemistry. Cambridge University Press, p 978

    Book  Google Scholar 

  4. Ombrello T, Qin X, Ju Y, Gutsol A , Fridman A (2005) Enhancement of combustion flame stabilization using stabilized non-equilibrium plasma. In: 43rd AIAA aerospace sciences meeting and exhibit, AIAA-2005-1194, Reno, Nevada

  5. Staack D, Farouk B, Gutsol A, Fridman A (2005) Characterization of a DC atmosphere pressure normal glow discharge. Plasma Sources Sci Technol 14(4):700–711

    Article  CAS  Google Scholar 

  6. Gutsol AF, Zhivotov VK, Potapkin BV, Fridman AA, Rusanov VD (1990) MW discharge in supersonic flows of molecular gases. Russ J Techn Phys 60(7):62–70

    Google Scholar 

  7. Kuznetsova IV, Kalashnikov NY, Gutsol AF, Fridman AA, Kennedy LA (2002) Effect of “overshooting” in the transitional regimes of the low current gliding arc discharge. J Appl Phys 92(8):4231–4237

    Article  CAS  Google Scholar 

  8. Fridman A, Chirokov A, Gutsol A (2005) Topical review “non thermal atmospheric pressure discharges.” J Phys D: Appl Phys 38(2):R1–R4

    Article  CAS  Google Scholar 

  9. Babaritskii AI, Baranov IE, Bibikov MB, Demkin SA, Zhivotov VK, Konovalov GM, Lysov GV, Moskovskii AS, Rusanov VD, Smirnov RV, Cheban’kov FN (2004) Partial hydrocarbon oxidation processes induced by atmospheric pressure microwave discharge plasma. High Energy Chem 38:407–411

    Article  CAS  Google Scholar 

  10. Kalra CS, Gutsol A, Fridman A (2005) Gliding arc discharge as a source of intermediate plasma for methane partial oxidation. IEEE Trans Plasma Sci 33(1):32–41

    Article  CAS  Google Scholar 

  11. Hartvigsen J, Elangovan S, Czernichowski P, Czernichowski A (2006) Achieving high efficiency in liquid fueled solid oxide fuel cell systems. In: Presentation on the fuel cell seminar, Honolulu, pp 21–23

  12. Bromberg L, Cohn DR, Rabinovich A (2006) Onboard plasmatron hydrogen production for improved vehicles. MIT Report PSFC JA-06-3

  13. Kalra C, Cho Y, Gutsol A, Fridman A, Rufael TS (2004) Non-thermal plasma catalytic conversion of methane to Syn-Gas. In: Preprint: FUEL 226, the 228th ACS national meeting in Philadelphia

  14. Gallagher MJ, Geiger R, Polevich A, Rabinovich A, Gutsol A, Fridman A (2010) On-board plasma assisted conversion of heavy hydrocarbons into synthesis gas. Fuel 89:1187–1192

    Article  CAS  Google Scholar 

  15. Mutaf-Yardimci O, Saveliev AV, Fridman AA, Kennedy LA (2000) Thermal and nonthermal regimes of gliding arc discharge in air flow. J Appl Phys 87(4):1632–1641

    Article  CAS  Google Scholar 

  16. Czernichowski A, Nassar H, Ranaivosoloarimanana A, Fridman AA, Simek M, Musiol K, Pawelec E, Dittrichova L (1996) Acta Phys Pol A 89:595

    Article  CAS  Google Scholar 

  17. Rabinovich A, Nirenberg G, Chernets I, Fridman A (2015) High power non-thermal plasma system for industrial applications. US Patent 9,216,400

  18. Odeyemi F, Rabinovich A, Fridman A (2012) Gliding arc plasma-stimulated conversion of pyrogas into synthesis gas. IEEE Trans Plasma Sci 40(4):1124–1130

    Article  CAS  Google Scholar 

  19. Han J, Peethambaran B, Balsamo R, Fridman A, Rabinovich A, Miller V, Fridman G (2015) Non-equilibrium plasmas in agriculture. In: 2015/7 presented on 22nd international symposium on plasma chemistry, Antwerp, Belgium, pp 17–19

  20. Lewis AJ, Joyce T, Hadaya M, Ebrahimi F, Dragiev I, Giardetti N, Yang J, Fridman G, Rabinovich A, Fridman AA, McKenzie ER (2020) Rapid degradation of PFAS in aqueous solutions by reverse vortex flow gliding arc plasma. J Environ Sci: Water Res Technol 6(4):1044–1057

    CAS  Google Scholar 

  21. Fridman A, Kennedy L (2004) Plasma Phys Eng 853

  22. Stratton GR et al (2017) Plasma-based water treatment: efficient transformation of perfluoroalkyl substances in prepared solutions and contaminated groundwater. Environ Sci Technol 51(3):1643–1648

    Article  CAS  Google Scholar 

  23. Chernets I et al (2011) Development of high-power plasma reformer and power supply for large scale applications. In: 20th international symposium on plasma chemistry

  24. Robinson RD et al (2012) Plasma acid production in a gliding arc plasmatron. Plasma Med 2(4)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Rabinovich.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabinovich, A., Nirenberg, G., Kocagoz, S. et al. Scaling Up of Non-Thermal Gliding Arc Plasma Systems for Industrial Applications. Plasma Chem Plasma Process 42, 35–50 (2022). https://doi.org/10.1007/s11090-021-10203-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-021-10203-5

Keywords

Navigation