Skip to main content
Log in

Selective Killing Effects of Atmospheric Pressure Plasma Jet on Human Melanoma and Lewis Lung Carcinoma Cells

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Melanoma is one type of skin cancer that develops from melanocytes and has been reported as the cause of deaths in different continents globally. This study aims to selectively “kill” only skin cancer cells by applying a customer designed and portable atmospheric pressure plasma jet (APPJ). Human melanoma (A375) and Lewis lung carcinoma (LLC) were selected as the target cancer cells to compare with the effects of APPJ toward L-929 mouse fibroblasts. The impacts of APPJ treatments on the cell viability and morphology of three types of cells were evaluated quantitatively by LDH and MTT assays whereas the qualitative cell behavior was provided by cell morphological changes. Importantly, the mechanism of evolution in cell fate resulted from APPJ treatments for the three types of cells was elucidated by cell apoptosis integrated with caspase-9 activities, which determined the threshold of APPJ treatment time toward individual cell type. Furthermore, it was found that the cell culture time assisted benign cells (L-929 fibroblasts) to resume proliferation activities from the impact of APPJ treatment. Therefore, the selective impacts on tumor and benign cells demonstrated in this study shed lights of APPJ treatments for the future developments of direct plasma skin cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1

Similar content being viewed by others

References

  1. Schadendorf D, van Akkooi ACJ, Berking C, Griewank KG, Gutzmer R, Hauschild A, Stang A, Roesch A, Ugurel S (2018) Melanoma. The Lancet 392(10151):971–984

    Article  Google Scholar 

  2. Johnson DB, Pollack MH, Sosman JA (2016) Emerging targeted therapies for melanoma. Expert Opin Emerg Drugs 21(2):195–207

    Article  CAS  PubMed  Google Scholar 

  3. Zhao G, Han X, Zheng S, Li Z, Sha Y, Ni J, Sun Z, Qiao S, Song Z (2016) Curcumin induces autophagy, inhibits proliferation and invasion by downregulating AKT/mTOR signaling pathway in human melanoma cells. Oncol Rep 35(2):1065–1074

    Article  CAS  PubMed  Google Scholar 

  4. Mirzaei H, Naseri G, Rezaee R, Mohammadi M, Banikazemi Z, Mirzaei HR, Salehi H, Peyvandi M, Pawelek JM, Sahebkar A (2016) Curcumin: a new candidate for melanoma therapy? Int J Cancer 139(8):1683–1695

    Article  CAS  PubMed  Google Scholar 

  5. Fogli S, Arena C, Carpi S, Polini B, Bertini S, Digiacomo M, Gado F, Saba A, Saccomanni G, Breschi MC, Nieri P, Manera C, Macchia M (2016) Cytotoxic activity of oleocanthal isolated from virgin olive oil on human melanoma cells. Nutr Cancer 68(5):873–877

    Article  CAS  PubMed  Google Scholar 

  6. Cui S, Wang J, Wu Q, Qian J, Yang C, Bo P (2017) Genistein inhibits the growth and regulates the migration and invasion abilities of melanoma cells via the FAK/paxillin and MAPK pathways. Oncotarget 8(13):21674–21691

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jo AR, Jeong HS, Kim MK, Yun HY, Baek KJ, Kwon NS, Kim DS (2016) Geranylgeranylacetone induces apoptosis via the intrinsic pathway in human melanoma cells. Biomed Pharmacother 82:15–19

    Article  CAS  PubMed  Google Scholar 

  8. Utsumi Fumi, Kajiyama Hiroaki, Nakamura Kae, Hiromasa Tanaka M, Hori F. Kikkawa (2014) Selective cytotoxicity of indirect nonequilibrium atmospheric pressure plasma against ovarian clear-cell carcinoma. SpringerPlus 3:398

    Article  PubMed  PubMed Central  Google Scholar 

  9. Utsumi F, Kajiyama H, Nakamura K, Tanaka H, Mizuno M, Ishikawa K, Kondo H, Kano H, Hori M, Kikkawa F (2013) Effect of indirect nonequilibrium atmospheric pressure plasma on anti-proliferative activity against chronic chemo-resistant ovarian cancer cells in vitro and in vivo. PLoS One 8(12):e81576

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Ma Y, Ha CS, Hwang SW, Lee HJ, Kim GC, Lee KW, Song K (2014) Non-thermal atmospheric pressure plasma preferentially induces apoptosis in p53-mutated cancer cells by activating ROS stress-response pathways. PLoS One 9(4):e91947

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ahn HJ, Kim KI, Kim G, Moon E, Yang SS, Lee JS (2011) Atmospheric-pressure plasma jet induces apoptosis involving mitochondria via generation of free radicals. PLoS One 6(11):e28154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ahn HJ, Kim KI, Hoan NN, Kim CH, Moon E, Choi KS, Yang SS, Lee JS (2014) Targeting cancer cells with reactive oxygen and nitrogen species generated by atmospheric-pressure air plasma. PLoS One 9(1):e86173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Lin A, Gorbanev Y, De Backer J, Van Loenhout J, Van Boxem W, Lemiere F, Cos P, Dewilde S, Smits E, Bogaerts A (2019) Non-thermal plasma as a unique delivery system of short-lived reactive oxygen and nitrogen species for immunogenic cell death in melanoma cells. Adv Sci (Weinh) 6(6):1802062

    Article  CAS  Google Scholar 

  14. Cheng G, Pan J, Podsiadly R, Zielonka J, Garces AM, DiasDuarteMachadoBennettMcAllisterDwinellYouKalyanaraman LGBDMBMB (2020) Increased formation of reactive oxygen species during tumor growth: ex vivo low-temperature EPR and in vivo bioluminescence analyses. Free Radic Biol Med 147:167–174

    Article  CAS  PubMed  Google Scholar 

  15. Han X, Klas M, Liu Y, Sharon Stack M, Ptasinska S (2013) DNA damage in oral cancer cells induced by nitrogen atmospheric pressure plasma jets. Appl Phys Lett 102(33):233703

    Article  CAS  Google Scholar 

  16. Huang YH, Wang MJ (2020) Atmospheric pressure plasma jet-assisted copolymerization of sulfobetaine methacrylate and acrylic acid. Plasm Process Polym 17(4):1900209

    Article  CAS  Google Scholar 

  17. Lukes P, Dolezalova E, Sisrova I, Clupek M (2014) Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: evidence for the formation of peroxynitrite through a pseudo-second-order post-discharge reaction of H2O2and HNO2. Plasm Sour Sci Technol 23(1):015019

    Article  CAS  Google Scholar 

  18. Gandhirajan RK, Rodder K, Bodnar Y, Pasqual-Melo G, Emmert S, Griguer CE, Weltmann KD, Bekeschus S (2018) Cytochrome C oxidase inhibition and cold plasma-derived oxidants synergize in melanoma cell death induction. Sci Rep 8(1):12734

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Sahoo AK, Goswami U, Dutta D, Banerjee S, Chattopadhyay A, Ghosh SS (2016) Silver nanocluster embedded composite nanoparticles for targeted prodrug delivery in cancer theranostics. ACS Biomater Sci Eng 2(8):1395–1402

    Article  CAS  PubMed  Google Scholar 

  20. Li F, Li T, Han X, Zhuang H, Nie G, Xu H (2017) Nanomedicine assembled by coordinated selenium-platinum complexes can selectively induce cytotoxicity in cancer cells by targeting the glutathione antioxidant defense system. ACS Biomater Sci Eng 4(6):1954–1962

    Article  PubMed  CAS  Google Scholar 

  21. Adams DJ, Boskovic ZV, Theriault JR, Wang AJ, Stern AM, Wagner BK, Shamji AF, Schreiber SL (2013) Discovery of small-molecule enhancers of reactive oxygen species that are nontoxic or cause genotype-selective cell death. ACS Chem Biol 8(5):923–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang TY, Libardo MDJ, Angeles-Boza AM, Pellois JP (2017) Membrane oxidation in cell delivery and cell killing applications. ACS Chem Biol 12(5):1170–1182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zeng Y, Du Q, Zhang Z, Ma J, Han L, Wang Y, Yang L, Tao N, Qin Z (2020) Curcumin promotes cancer-associated fibroblasts apoptosis via ROS-mediated endoplasmic reticulum stress. Arch Biochem Biophys 694:108613

    Article  CAS  PubMed  Google Scholar 

  24. Jacobson MD, Weil M, Raff MC (1997) Proframmed cell death in animal develpoment. Cell 88:347–354

    Article  CAS  PubMed  Google Scholar 

  25. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zamzami N, Hirsch T, Dallaporta B, Petit PX, Kroemer G (1997) Mitochondrial implication in accidental and programmed cell death: apoptosis and necrosis. J Bioenerg Biomembr 29:185–193

    Article  CAS  PubMed  Google Scholar 

  27. Fan TJ, Han LH, Cong RS, Liang J (2005) Caspase family proteases and apoptosis. Acta Biochim Biophys Sin (Shanghai) 37(11):719–727

    Article  CAS  Google Scholar 

  28. Gyrd-Hansen M, Farkas T, Fehrenbacher N, Bastholm L, Hoyer-Hansen M, Elling F, Wallach D, Flavell R, Kroemer G, Nylandsted J, Jaattela M (2006) Apoptosome-independent activation of the lysosomal cell death pathway by caspase-9. Mol Cell Biol 26(21):7880–7891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Conway GE, He Z, Hutanu AL, Cribaro GP, Manaloto E, Casey A, Traynor D, Milosavljevic V, Howe O, Barcia C, Murray JT, Cullen PJ, Curtin JF (2019) Cold atmospheric plasma induces accumulation of lysosomes and caspase-independent cell death in U373MG glioblastoma multiforme cells. Sci Rep 9(1):12891

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Iseki S, Nakamura K, Hayashi M, Tanaka H, Kondo H, Kajiyama H, Kano H, Kikkawa F, Hori M (2012) Selective killing of ovarian cancer cells through induction of apoptosis by nonequilibrium atmospheric pressure plasma. Appl Phys Lett 10(1063/1):3694928

    Google Scholar 

  31. Kurniawan H, Ye Y-S, Kuo W-H, Lai J-T, Wang M-J, Liu H-S (2013) Improvement of biofouling resistance on bacterial cellulose membranes. Biochem Eng J 78:138–145

    Article  CAS  Google Scholar 

  32. Tsai WB, Chen WT, Chien HW, Kuo WH, Wang MJ (2011) Poly(dopamine) coating of scaffolds for articular cartilage tissue engineering. Acta Biomater 7(12):4187–4194

    Article  CAS  PubMed  Google Scholar 

  33. Zhang H, Xu Z, Shen J, Li X, Ding L, Ma J, Lan Y, Xia W, Cheng C, Sun Q, Zhang Z, Chu PK (2015) Effects and mechanism of atmospheric-pressure dielectric barrier discharge cold plasma on lactate dehydrogenase (LDH) enzyme. Sci Rep 5:10031

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lukes P, Locke BR, a.J.-L. Brisset. (2012) Aqueous-phase chemistry of electrical discharge plasma in water and in gas–liquid environments. Plasm Chem Catal Gas Liq. https://doi.org/10.1002/9783527649525

    Article  Google Scholar 

  35. Saito N, Hieda J, Takai O (2009) Synthesis process of gold nanoparticles in solution plasma. Thin Sol Film 518(3):912–917

    Article  CAS  Google Scholar 

  36. Dzimitrowicz A, Bielawska-Pohl A, Pohl P, Jermakowicz-Bartkowiak D, Jamroz P, Malik-Gajewska M, Klimczak A, Cyganowski P (2020) Application of oil-in-water nanoemulsion carrying size-defined gold nanoparticles synthesized by non-thermal plasma for the human breast cancer cell lines migration and apoptosis. Plasm Chem Plasm Process 40(4):1037–1062

    Article  CAS  Google Scholar 

  37. Moisan M, Barbeau J, Crevier MC, Pelletier J, Philip N, Saoudi B (2002) Plasma sterilization methods and mechanisms. Pure Appl Chem 74(3):349–358

    Article  CAS  Google Scholar 

  38. Van Khoai D, Kitano A, Yamamoto T, Ukita Y, Takamura Y (2013) Development of high sensitive liquid electrode plasma – atomic emission spectrometry (LEP-AES) integrated with solid phase pre-concentration. Microelectron Eng 111:343–347

    Article  CAS  Google Scholar 

  39. Sivachandiran L, Khacef A (2017) Enhanced seed germination and plant growth by atmospheric pressure cold air plasma: combined effect of seed and water treatment. RSC Adv 7(4):1822–1832

    Article  CAS  Google Scholar 

  40. Billah M, Sajib SA, Roy NC, Rashid MM, Reza MA, Hasan MM, Talukder MR (2020) Effects of DBD air plasma treatment on the enhancement of black gram (Vigna mungo l) seed germination and growth. Arch Biochem Biophys 681:108253

    Article  CAS  PubMed  Google Scholar 

  41. Jacobson MD (2007) Reactive oxygen species and programmed cell death. Trends Biochem Sci 21(3):83–86

    Article  Google Scholar 

  42. Reuter S, Tresp H, Wende K, Hammer MU, Winter J, Masur K, Schmidt-Bleker A, Weltmann K-D (2012) From RONS to ROS: tailoring plasma jet treatment of skin cells. IEEE Trans Plasm Sci 40(11):2986–2993

    Article  CAS  Google Scholar 

  43. Kim SJ, Chung TH (2016) Cold atmospheric plasma jet-generated RONS and their selective effects on normal and carcinoma cells. Sci Rep 6:20332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vermeylen S, De Waele J, Vanuytsel S, De Backer J, Van der Paal J, Ramakers M, Leyssens K, Marcq E, Van Audenaerde J, Smits ELJ, Dewilde S, Bogaerts A (2016) Cold atmospheric plasma treatment of melanoma and glioblastoma cancer cells. Plasm Process Polym 13(12):1195–1205

    Article  CAS  Google Scholar 

  45. Canal C, Fontelo R, Hamouda I, Guillem-Marti J, Cvelbar U, Ginebra MP (2017) Plasma-induced selectivity in bone cancer cells death. Free Radic Biol Med 110:72–80

    Article  CAS  PubMed  Google Scholar 

  46. Harley JC, Suchowerska N, McKenzie DR (2020) Cancer treatment with gas plasma and with gas plasma-activated liquid: positives, potentials and problems of clinical translation. Biophys Rev 12(4):989–1006

    Article  PubMed  PubMed Central  Google Scholar 

  47. Chen M, Guerrero AD, Huang L, Shabier Z, Pan M, Tan TH, Wang J (2007) Caspase-9-induced mitochondrial disruption through cleavage of anti-apoptotic BCL-2 family members. J Biol Chem 282(46):33888–33895

    Article  CAS  PubMed  Google Scholar 

  48. Li W, Yu KN, Ma J, Shen J, Cheng C, Zhou F, Cai Z, Han W (2017) Non-thermal plasma induces mitochondria-mediated apoptotic signaling pathway via ROS generation in HeLa cells. Arch Biochem Biophys 633:68–77

    Article  CAS  PubMed  Google Scholar 

  49. Liu JR, Wu YM, Xu GM, Gao LG, Ma Y, Shi XM, Zhang GJ (2019) Low-temperature plasma induced melanoma apoptosis by triggering a p53/PIGs/caspase-dependent pathway in vivo and in vitro. J Phys D: Appl Phys 52(31):315204

    Article  CAS  Google Scholar 

  50. Cohen GM (1997) Caspases: the executioners of apoptosis. Biochem J 326:1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Milkovic L, Cipak Gasparovic A, Cindric M, Mouthuy PA, Zarkovic N (2019) Short overview of ROS as cell function regulators and their implications in therapy concepts. Cells 8(8):793

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial supports from the Ministry of Science and Technology (MOST) of Taiwan under grant number MOST105-2221-E-011-139-MY-3, MOST108-2221-E-011-109-MY3, and Taiwan Tech Ph.D. Student Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng-Jiy Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muneekaew, S., Huang, Y. & Wang, MJ. Selective Killing Effects of Atmospheric Pressure Plasma Jet on Human Melanoma and Lewis Lung Carcinoma Cells. Plasma Chem Plasma Process 41, 1613–1629 (2021). https://doi.org/10.1007/s11090-021-10197-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-021-10197-0

Keywords

Navigation