Skip to main content
Log in

Enhanced In situ Activity of Peroxidases and Lignification of Root Tissues after Exposure to Non-Thermal Plasma Increases the Resistance of Pea Seedlings

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Improving the germination of economically important crops and the condition of young plants is a major challenge currently facing agricultural practice. Pea (Pisum sativum L.) is one of the four most important cultivated legumes, along with groundnut (Arachis hypogaea L.), soybean (Glycine max L.) and beans (Phaseolus vulgaris L.). Due to the high protein content (23–33%), there is an interest in growing this crop as a source of protein for humans and animals. In this study, we focused on the effect of Cold Atmospheric Pressure Plasma (CAPP) on the decontamination and germination of pea seeds, on young seedling growth and production parameters, and on increasing their resistance and mechanical strength. We can state that germination increased by 10 to 25% after plasma treatment, and the most significant decontamination effect was detected when using non-thermal plasma generated in the ambient air (A-variants) and in the nitrogen atmosphere (N-variants). The increased in situ activity of peroxidases (POX) in the cell walls of A-variants and N-variants is also closely related to the increase in the mechanical strength of the cell walls and thus contributes to the higher resistance of these seedlings. This is also illustrated by the differences in lignin deposition among the different variants after CAPP treatment. To our knowledge, this is the first study concerning the influence of CAPP on the lignification of root tissues and on increasing the strength and resistance of plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chen FF (2016) Plasma applications. Springer, Switzerland, Introduction to plasma physics and controlled fusion. https://doi.org/10.1007/978-3-319-22309-4_10

    Book  Google Scholar 

  2. Šimončicová J, Kryštofová S, Medvecká V, Ďurišová K, Kaliňáková B (2019) Technical applications of plasma treatments: current state and perspectives. Appl Microbiol Biotechnol [online] 103:5117–5129

    Google Scholar 

  3. Hertwig C, Meneses N, Mathys A (2018) Cold atmospheric pressure plasma and low energy electron beam as alternative nonthermal decontamination technologies for dry food surfaces: a review. Trends Food Sci Technol [online] 77:131–142

    CAS  Google Scholar 

  4. Moreau M, Orange N, Feuilloley MGJ (2008) Non-thermal plasma technologies: new tools for bio-decontamination. Biotechnol Adv 26:610–617

    CAS  PubMed  Google Scholar 

  5. Laroussi M, Leipold F (2004) Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure. Int J Mass Spectrom 233:81–86

    CAS  Google Scholar 

  6. Larroussi M (2005) Low temperature plasma-based sterilization: overview and state-of-the art. Plasma Process Polym 2:391–400

    Google Scholar 

  7. Bourke P, Ziuzina D, Boehm D, Cullen PJ, Keener K (2018) The potential of cold plasma for safe and sustainable food production. Trends Biotechnol 36:615–626

    CAS  PubMed  Google Scholar 

  8. Ling L, Jiafeng J, Jiangang L, Minchong S, Xin H, Hanliang S, Yuanhua D (2014) Effects of cold plasma treatment on seed germination and seedling growth of soybean. Sci Rep 4:5859

    PubMed  PubMed Central  Google Scholar 

  9. Meng Y, Qu G, Wang T, Sun Q, Liang D, Hu S (2017) Enhancement of germination and seedling growth of wheat seed using dielectric barrier discharge plasma with various gas sources. Plasma Chem Plasma Process 37:1105–1119

    CAS  Google Scholar 

  10. Kyzek S, Holubová Ľ, Medvecká V, Tomeková J, Gálová E, Zahoranová A (2019) Cold atmospheric pressure plasma can induce adaptive response in pea seeds. Plasma Chem Plasma Process 39:475–486

    CAS  Google Scholar 

  11. Stolárik T, Henselová M, Martinka M, Novák O, Zahoranová A, Černák M (2015) Effect of low-temperature plasma on the structure of seeds, growth and metabolism of endogenous phytohormones in pea (Pisum sativum L.). Plasma Chem Plasma Proces 35:659–676

    Google Scholar 

  12. Ji SH, Choi KH, Pengkit A, Im JS, Kim JS, Kim YH, Park Y, Hong EJ, Jung SK, Choi EH, Park G (2016) Effects of high voltage nanosecond pulsed plasma and micro DBD plasma on seed germination, growth development and physiological activities in spinach. Arch Biochem Biophys 605:117–128

    CAS  PubMed  Google Scholar 

  13. Bormashenko E, Grynyov R, Bormashenko Y, Drori E (2012) Cold radiofrequency plasma treatment modifies wettability and germination speed of plant seeds. Sci Rep 2:3–10

    Google Scholar 

  14. Bormashenko B, Shapira Y, Grynyov R, Whyman G, Bormashenko Y, Drori E (2015) Interaction of cold radiofrequency plasma with seeds of beans (Phaseolus vulgaris). J Exp Bot 66(13):4013–4021

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Nishime TMC, Wannicke N, Horn S, Weltmann KD, Brust H (2020) A coaxial dielectric barrier discharge reactor for treatment of winter wheat seeds. Appl Sci 10:7133. https://doi.org/10.3390/app10207133

    Article  CAS  Google Scholar 

  16. Dobrin D, Magureanu M, Mandache NB, Ionita MD (2015) The effect of non-thermal plasma treatment on wheat germination and early growth. Innov Food Sci Emerg Technol 29:255–260

    CAS  Google Scholar 

  17. Sera B, Sery M, Gavril B, Gajdova I (2017) Seed germination and early growth responses to seed pre-treatment by non-thermalplasma in hemp vultivars (Cannabis sativa L.). Plasma Chem Plasma Process 37:207–221

    CAS  Google Scholar 

  18. Zahoranová A, Henselová M, Hudecová D, Kaliňáková B, Kováčik D, Medvecká V, Černák M (2016) Effect of cold atmospheric pressure plasma on the wheat seedlings vigor and on the inactivation of microorganisms on the seeds surface. Plasma Chem Plasma Process 36:397–414

    Google Scholar 

  19. Panngom K, Lee SH, Park DH, Sim GB, Kim YH, Uhm HS, Park G, Choi EH (2014) Non-thermal plasma treatment diminishes fungal viability and up-regulates resistance genes in a plant host. PLoS ONE 9:e99300

    PubMed  PubMed Central  Google Scholar 

  20. Kordas L, Pusz W, Czapka T, Kacprzyk R (2015) The effect of low-temperature plasma on fungus colonization of winter wheat grain and seed quality. Polish J Environ Stud 24:433–438

    CAS  Google Scholar 

  21. Zahoranová A, Hoppanová L, Šimončicová J, Tučeková Z, Medvecká M, Hudecová D, Kaliňáková B, Kováčik D, Černák M (2018) Effect of cold atmospheric pressure plasma on maize seeds: Enhancement of seedlings growth and surface microorganisms inactivation. Plasma Chem Plasma Proces 38:969–988

    Google Scholar 

  22. Tensmeyer LG, Wright PE, Fegenbush DO, Snapp SW (1981) Sterilization of glass containers by laser initiated plasmas. J Parenter Sci Technol 35:93–97

    CAS  PubMed  Google Scholar 

  23. Nelson CL, Berger TJ (1989) Inactivation of microorganisms by oxygen gas plasma. Curr Microbiol 18:275–276

    CAS  Google Scholar 

  24. Švubová R, Kyzek S, Medvecká V, Slováková Ľ, Gálová E, Zahoranová A (2020) Novel insight at the effec of cold atmospheric pressure plasma on the activity of enzymes essential for the germination of pea (Pisum sativum L. cv. Prophet) seeds. Plasma Chem Plasma Proces 40:1221–1240

    Google Scholar 

  25. Bafoil M, Jemmat A, Martinez Y, Merbahi N, Eichwald O, Dunand C, Yousfi M (2018) Effects of low temperature plasmas and plasma activated waters on Arabidopsis thaliana germination and growth. PLoS ONE 13:e0195512

    PubMed  PubMed Central  Google Scholar 

  26. Yemeli GBN, Švubová R, Kostoláni D, Kyzek S, Machala Z (2020) The effect of water activated by nonthermal air plasma on the growth of farm plants: Case of maize and barley. Plasma Process Polym 18(1):2000205

    Google Scholar 

  27. Jiang J, Lu Y, Li J, Li L, He X, Shao H, Dong Y (2014) Effect of seed treatment by cold plasma on the resistance of tomato to Ralstonia solanacearum (bacterial wilt). PLoS ONE 9:e97753

    PubMed  PubMed Central  Google Scholar 

  28. Černák M, Černáková L, Hudec I, Černák M, Černáková L, Hudec I (2009) Difuse coplanar surface barrier discharge and its applications for in-line processing of low-added-value materials. Eur Phys J Appl Phys 47:22806

    Google Scholar 

  29. Tomeková J, Kyzek S, Medvecká V, Gálová E, Zahoranová A (2020) Influence of cold atmospheric pressure plasma on pea seeds: DNA damage of seedlings and optical diagnostics of plasma. Plasma Chem Plasma Proces 40:1571–1584

    Google Scholar 

  30. Abdul-Baki A, Anderson J (1973) Vigor determination in soybean seed by multiple criteria. Crop Sci 13:630–633

    Google Scholar 

  31. Bradford MM (1976) A rapid and sensitive method for the quantitation microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  32. Matušíková I, Salaj J, Moravčíková J, Mlynárová L, Nap J-P, Libantová J (2005) Tentacles of in vitro-grown round-leaf sundew Drosera rotundifolia L. show induction of chitinase activity upon mimicking the presence of prey. Planta 222(6):1020–1027

    PubMed  Google Scholar 

  33. Kumar D, Yusuf M, Singh P, Sardar M, Sarin NB (2014) Histochemical detection of superoxide and H2O2 accumulation in Brassica juncea seedlings. Bio Protoc 4:3–6

    Google Scholar 

  34. Frič F, Fuchs W (1970) Veränderungen der Aktivität einiger Enzyme im Weizenblatt in Abhängigkeit von der temperaturlabilen Verträglichkeit für Puccinia graminis tritici. J Phytopathol 67:161–174

    Google Scholar 

  35. Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    CAS  PubMed  Google Scholar 

  36. Ferrer MA, Calderón AA, Muñoz R, Ros Barceló A (1990) 4-methoxy-a-naphthol as a specific substrate for kinetic, zymographic and cytochemical studies on plant peroxidase activities. Phytochem Anal 1:63–69

    Google Scholar 

  37. Ďurčeková K, Huttová J, Mistrík I, Olle M, Tamás L (2007) Cadmium induces premature xylogenesis in barley roots. Plant Soil 290:61–68

    Google Scholar 

  38. Gichner T, Patková Z, Száková J, Žnidar I, Mukherjee A (2008) DNA damage in potato plants induced by cadmium, ethyl methanesulphonate and γ-rays. Environ Exp Bot 62:113–119

    CAS  Google Scholar 

  39. Dhayal M, Lee SY, Park SU (2006) Using low-pressure plasma for Carthamus tinctorium L seed surface modification. Vacuum 80(5):499–506

    CAS  Google Scholar 

  40. Švubová R, Slováková Ľ, Holubová Ľ, Rovňanová D, Gálová R, Tomeková J (2021) Evaluation of the impact of cold atmospheric pressure plasma on soybean seed germination. Plants Basel 10:177. https://doi.org/10.3390/plants10010177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bewley JD, Bradford KJ, Hilhorst HWM, Nonogaki H (eds) (2013) Seeds Physiology of development, germination and dormancy. Springer, New York

    Google Scholar 

  42. Švubová R, Kročková V, Renčko J, Slováková Ľ, Zahoranová A (2018). Vplyv nízkoteplotnej plazmy na klíčenie hospodársky významných plodín (Effect of low-temperature plasma on germination of agriculturally important crops). In: Vliv abiotických a biotických stresorů na vlastnosti rostlin 2018 - Zvolen, 05.09.2018 - 06.09.2018. SK

  43. Renčko J, Medvecká V, Slováková Ľ, Zahoranová A (2019). Účinok nízkoteplotnej plazmy na procesy klíčenia jarného jačmeňa (Hordeum vulgare L. cv. Malz). (Impact of low-temperature plasma on germination process of spring barley (Hordeum vulgare L. cv. Malz). In: Študentská vedecká konferencia PriF UK 2019 - Bratislava, 09.04.2019. SK

  44. Kročková V, Medvecká V, Švubová R, Zahoranová A (2019). Vplyv nízkoteplotnej plazmy (NTP) na klíčenie a antioxidačnú odozvu mladých klíčencov kukurice siatej (Zea mays L. hybrid Ronaldinio). (The influence of low-temperature plasma (NTP) on germination and antioxidative response of yong Zea mays L. (hybrid Ronaldinio) seedlings). In: Študentská vedecká konferencia PriF UK 2019 - Bratislava, 09.04.2019. SK

  45. Di Pietro AD, Madrid MP, Caracuel Z, Delgado-Jarana J, Roncero MIG (2003) Fusarium oxysporum: exploring the molecular arsenal of a vascular wilt fungus. Mol Plant Pathol 4(5):315–325

    PubMed  Google Scholar 

  46. Fravel D, Olivain C, Alabouvette C (2003) Fusarium oxysporum and its biocontrol. New Phytol 157:493–502

    PubMed  Google Scholar 

  47. Moisan M, Barbeau J, Moreau S, Pelletier J, Tabrizian M, Yahia L’H, (2001) Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms. Int J Pharm 226:1–21

    CAS  PubMed  Google Scholar 

  48. Zheng J, Su Ch, Zhou J, Xu L, Qian Y, Chen H (2017) Effects and mechanisms of ultraviolet, chlorination, and ozone disinfection on antibiotic resistance genes in secondary effluents of municipal wastewater treatment plants. Chem Eng J 317:309–316

    CAS  Google Scholar 

  49. Kang MH, Pengkit A, Choi K, Jeon SS, Choi HW, Shin DB, Choi EH, Uhm HS, Park G (2015) Differential inactivation of fungal spores in water and on seeds by ozone and arc discharge plasma. PLoS ONE. https://doi.org/10.1371/journal.pone.0139263

    Article  PubMed  PubMed Central  Google Scholar 

  50. Khamsen N, Onwimol D, Teerakawanich N, Dechanupaprittha S, Kanokbannakorn W, Hongesombut K, Srisonphan S (2016) Rice Oryza sativa L seed sterilization and germination enhancement via atmospheric hybrid nonthermal discharge plasma. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.6b04555

    Article  PubMed  Google Scholar 

  51. Tadege M, Dupuis I, Kuhlemeier C (1999) Ethanolic fermentation: new functions for an old pathway. Trends Plant Sci 4:320–324

    CAS  PubMed  Google Scholar 

  52. Su L, Lan Q, Pritchard HW, Xue H, Wang X (2016) Reactive oxygen species induced by cold stratification promote germination of Hedysarum scoparium seeds. Plant Physiol Bioch 109:406–415

    CAS  Google Scholar 

  53. Mildažienė V, Aleknavičiūtė V, Žūkienė R, Paužaitė G, Naučienė Z, Filatova I, Lyushkevich V, Haimi P, Tamošiūnė I, Baniulis D (2019) Treatment of common sunflower Helianthus annus L seeds with radio-frequency electromagnetic field and cold plasma induces changes in seed phytohormone balance, seedling development and leaf protein expression. Sci Rep 9(1):1–12

    Google Scholar 

  54. Huang H, Ullah F, Zhou DX, Yi M, Zhao Y (2019) Mechanisms of ROS regulation of plant development and stress responses. Front Plant Sci. https://doi.org/10.3389/fpls.2019.00800

    Article  PubMed  PubMed Central  Google Scholar 

  55. Henselová M, Slováková Ľ, Martinka M, Zahoranová A (2012) Growth, anatomy and enzyme activity changes in maize roots induced by treatment of seeds with low-temperature plasma. Biologia 67:490–497

    Google Scholar 

  56. Kučerová K, Henselová M, Slováková Ľ, Hensel K (2019) Effects of plasma activated water on wheat: Germination, growth parameters, photosynthetic pigments, soluble protein content, and antioxidant enzymes activity. Plasma Process Polym 16:e1800131

    Google Scholar 

  57. Huang GT, Ma SL, Bai LP, Zhang L, Ma H, Jia P, Liu J, Zhong M, Guo ZF (2012) Signal transduction during cold, salt, and drought stresses in plants. Mol Biol Rep 39(2):969–987

    PubMed  Google Scholar 

  58. Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. https://doi.org/10.1155/2012/217037

    Article  Google Scholar 

  59. Cosgrove DJ (1997) Assembly and enlargement of the primary cell wall in plants. Annu Rev Cell Dev Biol 13:171–201

    CAS  PubMed  Google Scholar 

  60. Begović L, Lepeduš H, Lalić A, Štolfa I, Jurković Z, Kovačević J, Cesar V (2017) Involvement of peroxidases in structural changes of barley stem. Bragantia [online] 76:52–359

    Google Scholar 

  61. Vaculik M, Landberg T, Greger M, Luxova M, Stolarikova M, Lux A (2012) Silicon modifies root anatomy, and uptake and subcellular distribution of cadmium in young maize plants. Ann Bot 110(2):433–443

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Vatehova Z, Kollarova K, Zelko I, Richterova-Kucerova D, Bujdos M, Liskova D (2012) Interaction of silicon and cadmium in Brassica juncea and Brassica napus. Biologia 67:498–504

    CAS  Google Scholar 

  63. Lukacova Z, Svubova R, Kohanova J, Lux A (2013) Silicon mitigates the Cd toxicity in maize in relation to cadmium translocation, cell distribution, antioxidant enzymes stimulation and enhanced endodermal apoplasmic barrier development. Plant Growth Regul 70:89–103

    CAS  Google Scholar 

  64. Masarovič D, Slováková Ľ, Bokor B, Bujdoš M, Lux A (2012) Effect of silicon application on Sorghum bicolor exposed to toxic concentration of zinc. Biologia 67:706–712

    Google Scholar 

  65. Lux A, Luxová M, Hattori T, Inanaga S, Sugimoto Y (2002) Silicification in sorghum (Sorghum bicolor) cultivars with different drought tolerance. Physiol Plant 115(1):87–92

    CAS  PubMed  Google Scholar 

  66. Lukacova Z, Švubová R, Janikovicova S, Volajova Z, Lux A (2019) Tobacco plants (Nicotiana benthamiana) were influenced by silicon and were not infected by dodder (Cuscuta europaea). Plant Physiol Biochem 139:179–190

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the Slovak Research and Development Agency under the contract No. APVV-16-0216 and VEGA No. 1/0410/18. Authors would like to express thanks doc. RNDr. Anna Zahoranová, PhD. for help and many valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Švubová Renáta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Renáta, Š., Nicolette, V., Monika, B. et al. Enhanced In situ Activity of Peroxidases and Lignification of Root Tissues after Exposure to Non-Thermal Plasma Increases the Resistance of Pea Seedlings. Plasma Chem Plasma Process 41, 903–922 (2021). https://doi.org/10.1007/s11090-021-10160-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-021-10160-z

Keywords

Navigation