Skip to main content
Log in

The Effect of Background Gas on the Excitation Temperature and Electron Number Density of Basalt Plasma Induced by 10.6 Micron Laser Radiation

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Time-integrated optical emission spectroscopy was applied for the analysis of emission spectra, and determination of electron densities and excitation temperatures of basalt plasma induced by 10.6 micron laser radiation. The plasma was studied in air, argon and carbon dioxide, under pressure of 10, 50, and 100 mbar. The plasma emission intensity was found to be strongly dependent on the nature of the ambient gas and its pressure. The highest emission intensities and signal to noise ratios were obtained in argon. Depending on the composition and pressure of the surrounding atmosphere, the values of plasma temperature varied between 14,400 K (air at 10 mbar) and 17,100 K (carbon dioxide at 100 mbar). Similarly, the electron number density varied between 3 × 1016 cm−3 (10 mbar air) and 1.6 × 1017 cm−3 (100 mbar CO2). The observed behavior was correlated with the properties of the studied gases, in particular, their mass, thermal conductivity and ionization energy, and the role of the ambient gas in controlling the efficiency of laser-target coupling, laser-plasma interaction and plasma shielding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Harmon RS, Russo RE, Hark RR (2013) Applications of laser-induced breakdown spectroscopy for geochemical and environmental analysis: a comprehensive review. Spectrochim Acta B At Spectrosc 87:11–26. https://doi.org/10.1016/j.sab.2013.05.017

    Article  CAS  Google Scholar 

  2. Gottfried JL, Harmon RS, De Lucia FC, Miziolek AW (2009) Multivariate analysis of laser-induced breakdown spectroscopy chemical signatures for geomaterial classification. Spectrochim Acta B At Spectrosc 64:1009–1019. https://doi.org/10.1016/j.sab.2009.07.005

    Article  CAS  Google Scholar 

  3. Qiao S, Ding Y, Tian D, Yao L, Yang G (2015) A review of laser-induced breakdown spectroscopy for analysis of geological Materials. Appl Spectrosc Rev 50:1–26. https://doi.org/10.1080/05704928.2014.911746

    Article  Google Scholar 

  4. Senesi GS, Senesi N (2016) Laser-induced breakdown spectroscopy (LIBS) to measure quantitatively soil carbon with emphasis on soil organic carbon. A review. Anal Chim Acta 938:7–17. https://doi.org/10.1016/j.aca.2016.07.039

    Article  CAS  PubMed  Google Scholar 

  5. Stipe CB, Guevara E, Brown J, Rossman GR (2012) Quantitative laser-induced breakdown spectroscopy of potassium for in situ geochronology on Mars. Spectrochim Acta B At Spectrosc 70:45–50. https://doi.org/10.1016/j.sab.2012.04.010

    Article  CAS  Google Scholar 

  6. Pavlov SG, Schröder S, Rauschenbach I, Jessberger EK, Hübers H-W (2012) Low-energy laser induced breakdown spectroscopy for in situ space missions to solar system bodies without atmospheres. Planet Space Sci 71:57–63. https://doi.org/10.1016/j.pss.2012.07.001

    Article  Google Scholar 

  7. Arp ZA, Cremers DA, Harris RD, Oschwald DM, Parker GR, Wayne DM (2004) Feasibility of generating a useful laser-induced breakdown spectroscopy plasma on rocks at high pressure: preliminary study for a Venus mission. Spectrochim Acta B At Spectrosc 59:987–999. https://doi.org/10.1016/j.sab.2004.05.004

    Article  CAS  Google Scholar 

  8. Scaffidi J, Angel SM, Cremers DA (2006) Emission enhancement mechanisms in dual-pulse LIBS. Anal Chem 78:24–32. https://doi.org/10.1021/ac069342z

    Article  PubMed  Google Scholar 

  9. Yalçin Ş, Crosley DR, Smith GP, Faris GW (1999) Influence of ambient conditions on the laser air spark. Appl Phys B Lasers Opt 68:121–130. https://doi.org/10.1007/s003400050596

    Article  Google Scholar 

  10. Glumac N, Elliott G (2007) The effect of ambient pressure on laser-induced plasmas in air. Opt Lasers Eng 45:27–35. https://doi.org/10.1016/j.optlaseng.2006.04.002

    Article  Google Scholar 

  11. Effenberger AJ, Scott JR (2010) Effect of atmospheric conditions on LIBS spectra. Sensors 10:4907–4925. https://doi.org/10.3390/s100504907

    Article  CAS  PubMed  Google Scholar 

  12. Hermann J, Gerhard C, Axente E, Dutouquet C (2014) Comparative investigation of laser ablation plumes in air and argon by analysis of spectral line shapes: insights on calibration-free laser-induced breakdown spectroscopy. Spectrochim Acta B At Spectrosc 100:189–196. https://doi.org/10.1016/j.sab.2014.08.014

    Article  CAS  Google Scholar 

  13. Iida Y (1990) Effects of atmosphere on laser vaporization and excitation processes of solid samples. Spectrochim Acta B At Spectrosc 45:1353–1367. https://doi.org/10.1016/0584-8547(90)80188-O

    Article  Google Scholar 

  14. De Giacomo A, Dell’Aglio M, Gaudiuso R, Amoruso S, De Pascale O (2012) Effects of the background environment on formation, evolution and emission spectra of laser-induced plasmas. Spectrochim Acta B At Spectrosc 78:1–19. https://doi.org/10.1016/j.sab.2012.10.003

    Article  CAS  Google Scholar 

  15. Hao ZQ, Liu L, Shen M, Yang XY, Li KH, Guo LB, Li XY, Lu YF, Zeng XY (2016) Investigation on self-absorption at reduced air pressure in quantitative analysis using laser-induced breakdown spectroscopy. Opt Express 24:26521. https://doi.org/10.1364/OE.24.026521

    Article  CAS  PubMed  Google Scholar 

  16. Yuan H, Gojani AB, Gornushkin IB, Wang X (2018) Investigation of laser-induced plasma at varying pressure and laser focusing. Spectrochim Acta B At Spectrosc 150:33–37. https://doi.org/10.1016/j.sab.2018.10.005

    Article  CAS  Google Scholar 

  17. Scott JRJ, Effenberger AJ, Hatch JJ (2014) Chapter 4 influence of atmospheric pressure and composition on LIBS. In: Musazzi S, Perini U (eds) Laser-induced breakdown spectroscopy: theory and applications. Springer, Berlin, pp 91–116

    Chapter  Google Scholar 

  18. Mahaffy PR, Webster CR, Atreya SK (2013) Abundance and isotopic composition of gases in the Martian atmosphere from the curiosity rover. Science 341(80):263–266. https://doi.org/10.1126/science.1237966

    Article  CAS  PubMed  Google Scholar 

  19. Ullán A, Zorzano M-P, Javier Martín-Torres F, Valentín-Serrano P, Kahanpää H, Harri A-M, Gómez-Elvira J, Navarro S (2017) Analysis of wind-induced dynamic pressure fluctuations during one and a half Martian years at Gale Crater. Icarus 288:78–87. https://doi.org/10.1016/j.icarus.2017.01.020

    Article  Google Scholar 

  20. Sallé B, Cremers DA, Maurice S, Wiens RC (2005) Laser-induced breakdown spectroscopy for space exploration applications: Influence of the ambient pressure on the calibration curves prepared from soil and clay samples. Spectrochim Acta B At Spectrosc 60:479–490. https://doi.org/10.1016/j.sab.2005.02.009

    Article  CAS  Google Scholar 

  21. Brennetot R, Lacour JL, Vors E, Rivoallan A, Vailhen D, Maurice S (2003) Mars analysis by laser-induced breakdown spectroscopy (MALIS): influence of mars atmosphere on plasma emission and study of factors influencing plasma emission with the use of Doehlert designs. Appl Spectrosc 57:744–752. https://doi.org/10.1366/000370203322102816

    Article  CAS  PubMed  Google Scholar 

  22. Savovic J, Stoiljkovic M, Kuzmanovic M, Momcilovic M, Ciganovic J, Rankovic D, Zivkovic S, Trtica M (2016) The feasibility of TEA CO2 laser-induced plasma for spectrochemical analysis of geological samples in simulated Martian conditions. Spectrochim Acta B At Spectrosc 118:127–136. https://doi.org/10.1016/j.sab.2016.02.020

    Article  CAS  Google Scholar 

  23. Savovic J, Momcilovic M, Zivkovic S, Stancalie A, Trtica M, Kuzmanovic M (2017) LIBS analysis of geomaterials: comparative study of basalt plasma induced by TEA CO2 and Nd:YAG laser in air at atmospheric pressure. J Chem 2017:1–9. https://doi.org/10.1155/2017/9513438

    Article  CAS  Google Scholar 

  24. Momcilovic M, Kuzmanovic M, Rankovic D, Ciganovic J, Stoiljkovic M, Savovic J, Trtica M (2015) Optical emission studies of copper plasma induced using infrared transversely excited atmospheric (IR TEA) carbon dioxide laser pulses. Appl Spectrosc 69:419–429. https://doi.org/10.1366/14-07584

    Article  CAS  PubMed  Google Scholar 

  25. Li X, Wei W, Wu J, Jia S, Qiu A (2013) Comparison of nanosecond laser produced brass plasmas under low and moderate pressure air. J Phys D Appl Phys 46:475207. https://doi.org/10.1088/0022-3727/46/47/475207

    Article  CAS  Google Scholar 

  26. Marpaung AM, Kurniawan H, Tjia MO, Kagawa K (2001) Comprehensive study on the pressure dependence of shock wave plasma generation under TEA CO2 laser bombardment on metal sample. J Phys D Appl Phys 34:758–771. https://doi.org/10.1088/0022-3727/34/5/315

    Article  CAS  Google Scholar 

  27. Harilal SS, Bindhu CV, Tillack MS, Najmabadi F, Gaeris AC (2002) Plume splitting and sharpening in laser-produced aluminium plasma. J Phys D Appl Phys 35:2935–2938. https://doi.org/10.1088/0022-3727/35/22/307

    Article  CAS  Google Scholar 

  28. Farid N, Harilal SS, Ding H, Hassanein A (2014) Emission features and expansion dynamics of nanosecond laser ablation plumes at different ambient pressures. J Appl Phys. https://doi.org/10.1063/1.4862167

    Article  Google Scholar 

  29. Pishdast M, Eslami Majd A, Kavosh Tehrani M (2016) The influence of plasma shielding effect on laser-ablated copper samples: a focus on signal-to-background ratio and plasma expansion. Laser Part Beams 34:493–505. https://doi.org/10.1017/S0263034616000355

    Article  CAS  Google Scholar 

  30. Kim YW (1989) Fundamentals of analysis of solids by laser-produced plasmas. In: Cremers DA, Radziemski LJ (eds) Laser-induced plasmas and applications. Dekker, New York

    Google Scholar 

  31. Li Y, Tian D, Ding Y, Yang G, Liu K, Wang C, Han X (2018) A review of laser-induced breakdown spectroscopy signal enhancement. Appl Spectrosc Rev 53:1–35. https://doi.org/10.1080/05704928.2017.1352509

    Article  CAS  Google Scholar 

  32. Mermet JM, Mauchien P, Lacour JL (2008) Processing of shot-to-shot raw data to improve precision in laser-induced breakdown spectrometry microprobe. Spectrochim Acta B At Spectrosc 63:999–1005. https://doi.org/10.1016/j.sab.2008.06.003

    Article  CAS  Google Scholar 

  33. Tognoni E, Cristoforetti G (2016) [INVITED] Signal and noise in laser induced breakdown spectroscopy: an introductory review. Opt Laser Technol 79:164–172. https://doi.org/10.1016/j.optlastec.2015.12.010

    Article  CAS  Google Scholar 

  34. Hahn DW, Omenetto N (2012) Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields. Appl Spectrosc 66:347–419. https://doi.org/10.1366/11-06574

    Article  CAS  PubMed  Google Scholar 

  35. Kramida A, Ralchenko Y, Reader J (2018) NAT NIST atomic spectra database (version 5.5.6) (online). https://physics.nist.gov/asd [Sun May 27 2018]. National Institute of Standards and Technology, Gaithersburg, MD

  36. Konjević N, Ivković M, Jovićević S (2010) Spectroscopic diagnostics of laser-induced plasmas. Spectrochim Acta B At Spectrosc 65:593–602. https://doi.org/10.1016/j.sab.2010.03.009

    Article  CAS  Google Scholar 

  37. Aragón C, Vega P, Aguilera JA (2011) Stark width measurements of Fe II lines with wavelengths in the range 260–300 nm. J Phys B At Mol Opt Phys 44:055002. https://doi.org/10.1088/0953-4075/44/5/055002

    Article  CAS  Google Scholar 

  38. Grifoni E, Legnaioli S, Lezzerini M, Lorenzetti G, Pagnotta S, Palleschi V (2014) Extracting time-resolved information from time-integrated laser-induced breakdown spectra. J Spectrosc 2014:1–5. https://doi.org/10.1155/2014/849310

    Article  Google Scholar 

  39. Aragón C, Aguilera JA (2008) Characterization of laser induced plasmas by optical emission spectroscopy: a review of experiments and methods. Spectrochim Acta B At Spectrosc 63:893–916. https://doi.org/10.1016/j.sab.2008.05.010

    Article  CAS  Google Scholar 

  40. Olivero JJ, Longbothum RL (1977) Empirical fits to the Voigt line width: a brief review. J Quant Spectrosc Radiat Transf 17:233–236. https://doi.org/10.1016/0022-4073(77)90161-3

    Article  Google Scholar 

  41. Ivković M, Konjević N (2017) Stark width and shift for electron number density diagnostics of low temperature plasma: application to silicon LIBS. Spectrochim Acta B At Spectrosc 131:79–92. https://doi.org/10.1016/j.sab.2017.03.015

    Article  CAS  Google Scholar 

  42. Dimitrijević MS, Sahal-Bréchot S (1994) Stark broadening of Al I spectral lines. Phys Scr 49:34–38. https://doi.org/10.1088/0031-8949/49/1/005

    Article  Google Scholar 

  43. Griem H (1974) Spectral line broadening by plasmas. Academic Press, New York

    Google Scholar 

  44. Narayanan V, Thareja R (2004) Emission spectroscopy of laser-ablated Si plasma related to nanoparticle formation. Appl Surf Sci 222:382–393. https://doi.org/10.1016/j.apsusc.2003.09.038

    Article  CAS  Google Scholar 

  45. Vesovic V, Wakeham WA, Olchowy GA, Sengers JV, Watson JTR, Millat J (1990) The transport properties of carbon dioxide. J Phys Chem Ref Data 19:763–808. https://doi.org/10.1063/1.555875

    Article  CAS  Google Scholar 

  46. Lemmon EW, Jacobsen RT (2004) Viscosity and thermal conductivity equations for nitrogen, oxygen, argon, and air. Int J Thermophys 25:21–69. https://doi.org/10.1023/B:IJOT.0000022327.04529.f3

    Article  CAS  Google Scholar 

  47. Dawood MS, Hamdan A, Margot J (2015) Influence of surrounding gas, composition and pressure on plasma plume dynamics of nanosecond pulsed laser-induced aluminum plasmas. AIP Adv 5:107143. https://doi.org/10.1063/1.4935100

    Article  CAS  Google Scholar 

  48. Mao XL, Shannon MA, Fernandez AJ, Russo RE (1995) Temperature and emission spatial profiles of laser-induced plasmas during ablation using time-integrated emission spectroscopy. Appl Spectrosc 49:1054–1062. https://doi.org/10.1366/0003702953964679

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Ministry of Education, Science and Technological Development of the Republic Serbia through the project, “Effects of Laser Radiation on Novel Materials in Their Synthesis, Modifications, and Analysis” (Project No. 172019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jelena Savovic.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Momcilovic, M., Zivkovic, S., Kuzmanovic, M. et al. The Effect of Background Gas on the Excitation Temperature and Electron Number Density of Basalt Plasma Induced by 10.6 Micron Laser Radiation. Plasma Chem Plasma Process 39, 985–1000 (2019). https://doi.org/10.1007/s11090-019-09987-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-019-09987-4

Keywords

Navigation