Skip to main content
Log in

Simulation for the Characteristics of Plasma of the Multi-gap Pseudospark Discharge

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

A high-energy electron beam was produced by a multi-gap pseudospark device under high breakdown voltages. In this work, a simulation model was developed to ascertain the mechanism of the discharge process in the multi-gap pseudospark, which was verified by the triggered multi-gap pseudospark discharge experiment. The characteristics of the plasma were investigated for different anode voltages and pressures. Results suggest the formation of a virtual anode in the cathode aperture during the discharge process, followed by the release of an electron from the plasma in the triggered hollow cavity. The propagation velocity of the ionization wave stimulated by the electron beam is increased with pressure and applied voltage on the anode. The highest density of the particles was found in the region of the cathode aperture. The densities of the particles in the aperture of the intermediate electrodes are higher than at the right adjacent side gaps when the entire gap space is filled with the plasma. The peak of the electron distribution function is found to be situated at higher energies at the beginning of discharge, then the electron distribution function gets shifted to lower energies on the completion of discharge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Christiansen J, Schultheiss C (1979) Z Phys A 290:35–41

    Article  CAS  Google Scholar 

  2. Korolev YD, Landl NV, Geyman VG, Frants OB, Bolotov AV (2017) AIP Adv 7:075116

    Article  Google Scholar 

  3. Korolev YD, Landl NV, Geyman VG, Frants OB, Shemyakin IA, Nekhoroshev VO (2016) Plasma Phys Rep 42:799–807

    Article  Google Scholar 

  4. He W, Zhang L, Bowes D, Yin H, Ronald K, Phelps ADR, Cross AW (2015) Appl Phys Lett 107:133501

    Article  CAS  Google Scholar 

  5. Jiang C, Kuthi A, Gundersen MA, Hartmann W (2005) Appl Phys Lett 87:131501

    Article  CAS  Google Scholar 

  6. Frank K, Christiansen J (1989) IEEE Trans Plasma Sci 17(7):48–53

    Google Scholar 

  7. Yin H, Phelps ADR, He W, Robb GRM, Ronald K, Aitken P, McNeil BWJ, Cross AW, Whyte CG (1998) Nucl Instrum Methods Phys Res Sect A 407:175–180

    Article  CAS  Google Scholar 

  8. Zhao J, Yin H, Zhang L, Shu G, He W, Zhang J, Zhang Q, Phelps ADR, Cross AW (2016) Phys Plasma 23:073116

    Article  CAS  Google Scholar 

  9. Korolev YD, Koval NN (2018) J Phys D Appl Phys 51:323001

    Article  CAS  Google Scholar 

  10. Frank K, Petzenhauser I, Blell U (2007) IEEE Trans Dielectr Electr Insul 14:968–975

    Article  CAS  Google Scholar 

  11. Stetter M, Felsner P, Christiansen J, Frank K, Gortler A, Hintz G, Mehr T, Stark R, Tkotz R (1995) IEEE Trans Plasma Sci 23:283–293

    Article  CAS  Google Scholar 

  12. Benker W, Christiansen J, Frank K, Gundel H, Hartmann W (1989) IEEE Trans Plasma Sci 17:754–757

    Article  CAS  Google Scholar 

  13. Varun D, Pal UN (2018) IEEE Trans Electron Devices 65:1542–1549

    Article  CAS  Google Scholar 

  14. Kumar N, Lamba RP, Hossain AM, Pal UN, Phelps ADR, Prakash R (2017) Appl Phys Lett 111:213502

    Article  CAS  Google Scholar 

  15. Kumar N, Pal DK, Lamba DP, Pal UN, Prakash R (2017) IEEE Trans Electron Devices 64:2688–2693

    Article  CAS  Google Scholar 

  16. Kumar N, Jadon AS, Shukla P, Pal UN, Prakash R (2017) IEEE Trans Plasma Sci 45:405–411

    Article  CAS  Google Scholar 

  17. Kumar N, Pal DK, Jadon AS, Pal UN, Rahaman H, Prakash R (2016) Rev Sci Instrum 87:033503

    Article  CAS  PubMed  Google Scholar 

  18. Zhao J, Yin H, Zhang L, Shu G, He W, Phelps ADR, Cross AW, Pang L, Zhang Q (2017) Phys Plasma 24:033118

    Article  CAS  Google Scholar 

  19. Zhao J, Yin H, Zhang L, Shu G, He W, Zhang Q (2017) Phys Plasma 24:023105

    Article  CAS  Google Scholar 

  20. Zhao J, Yin H, Zhang L, He W, Phelps ADR, Cross AW (2017) Phys Plasma 24:060703

    Article  CAS  Google Scholar 

  21. Huang Y, Wang M, Zhang L, Lu B, Feng C, Zhou H (1996) Acta Opt Sin 10:1493–1496 (in Chinese)

    Google Scholar 

  22. Lamba RP, Pal UN, Meena BL, Prakash R (2018) Plasma Sources Sci Technol 27:035003

    Article  CAS  Google Scholar 

  23. Jain KK, Boggasch E, Reiser M, Rhee MJ (1990) Phys Fluids B 2:2487–2491

    Article  CAS  Google Scholar 

  24. Jiang XL, Han LJ (1992) Rev Sci Instrum 63:2420–2421

    Article  CAS  Google Scholar 

  25. Frank K et al (1997) IEEE Trans Plasma Sci 25:740–747

    Article  Google Scholar 

  26. Verboncoeur JP, Langdon AB, Gladd NT (1995) Comput Phys Commun 87:199–211

    Article  CAS  Google Scholar 

  27. Hagelaar GJM, Pitchford LC (2005) Plasma Sources Sci Technol 14:722–733

    Article  CAS  Google Scholar 

  28. Vahedi V, Surendra M (1995) Comput Phys Commun 87:179

    Article  CAS  Google Scholar 

  29. Saravanan A, Prince A, Suraj K (2017) Phys. Plasma 24:112106

    Article  CAS  Google Scholar 

  30. Shuiliang M, John H, Nandika T (2011) Phys Plasma 18:083301

    Article  CAS  Google Scholar 

  31. Weihao T et al (2018) Plasma Sources Sci Technol 27:015005

    Google Scholar 

  32. Lagarkov AN, Rutkevich IM (1994) Ionization waves in electric breakdown of gases. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Pro. Klaus Frank for a discussion regarding the multi-gap pseudospark discharge process. This work was supported in part by the National Natural Science Foundation of China under Grant No. 11705134, the Project funded by Shaanxi Province Postdoctoral Science Foundation (Grant No. 2017BSHEDZZ120) and the Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2018JQ1044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Zheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zheng, Y. Simulation for the Characteristics of Plasma of the Multi-gap Pseudospark Discharge. Plasma Chem Plasma Process 39, 969–984 (2019). https://doi.org/10.1007/s11090-019-09983-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-019-09983-8

Keywords

Navigation