Skip to main content
Log in

CN (B 2Σ+ → X 2Σ+) Violet System in a Cold Atmospheric-Pressure Argon Plasma Jet

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

\( {\text{CN}} (B^{2}\Sigma ^{ + } \to X^{2}\Sigma ^{ + } ) \) violet system was investigated using optical emission spectroscopy in a non-equilibrium microwave atmospheric-pressure plasma jet in argon expanding in air. From the analysis of the emission spectra of the discharge in the range of 380 and 400 nm, the violet system of CN was found to be overlapped with the \( {\text{N}}_{2}^{ + } \left( {B^{2}\Sigma _{u}^{ + } , v = 1 \to X^{2}\Sigma _{g}^{ + } , v = 1} \right) \) and \( {\text{N}}_{2} \left( {C^{3}\Pi _{u} \to B^{3}\Pi _{g} } \right) \) bands, sequence \( \Delta \upsilon = - \;3 \). A numerical disentangle technique, developed in this work, permitted to obtain a well resolved violet system from the different systems observed, namely the nitrogen First Negative and the Second Positive systems. The \( {\text{CN}} (B^{2}\Sigma ^{ + } \to X^{2}\Sigma ^{ + } ) \) band head intensity was determined and analysed as function of discharge powers between 30 and 150 W and fluxes between 2.5 and 10.0 slm. With aid of this numerical approach it was also possible to obtain the rotational temperature, from (1600 ± 100) to (2300 ± 100) K and vibrational temperature between (9000 ± 800) and (14,000 ± 800) K along the plasma jet. The kinetics of \( {\text{CN}} (B^{2}\Sigma ^{ + } ) \) state was analysed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Solomon P, Vanden Bout P, Carilli C, Guelin M (2003) Nature 426:636–638

    Article  CAS  Google Scholar 

  2. Lieberei R, Biehl B, Giesemann A, Junqueira NTV (1989) Plant Physiol 90:33–36

    Article  CAS  Google Scholar 

  3. Moller BL (2010) Current Opin Plant Biol 13:338–347

    Article  CAS  Google Scholar 

  4. Bhattacharya R, Lakshmana Rao PV (1997) Toxicology 123:207–215

    Article  CAS  Google Scholar 

  5. Okolie NP, Osagie AU (2000) Food Chem Toxicol 38:543–548

    Article  CAS  Google Scholar 

  6. Loureiro J, Amorim J (2016) Kinetics and spectroscopy of low temperature plasmas, 1st edn. Springer, Berlin

    Google Scholar 

  7. www.co2.earth. Accessed 03 Mar 2017

  8. Dilecce G, Ambrico PF, Scarduelli G, Tosi P, De Benedictis S (2009) Plasma Sources Sci Technol 18:015010

    Article  Google Scholar 

  9. Setser DW, Trush BA (1968) Proc R Soc A 288:256–291

    Article  Google Scholar 

  10. Boden JC, Trush BA (1968) Proc R Soc A 305:93–105, 107–123

  11. Grigorian G, Cenian A (2011) Plasma Chem Plasma Process 31:337–352

    Article  CAS  Google Scholar 

  12. Washida N, Kley D, Becker KH, Groth W (1975) J Chem Phys 63:4230–4241

    Article  CAS  Google Scholar 

  13. Pintassilgo CD, Cernogora G, Loureiro J (2001) Plasma Sources Sci Technol 10:147–161

    Article  CAS  Google Scholar 

  14. Broida HP, Heath DF (1957) J Chem Phys 26:1352

    Article  CAS  Google Scholar 

  15. Iseni S, Bruggeman PJ, Weltmann KD, Reuter S (2016) Appl Phys Lett 108:184101

    Article  Google Scholar 

  16. Schmidt-Bleker A, Norberg SA, Winter J, Johnsen E, Reuter S, Weltmann KD, Kushner MJ (2015) Plasma Sources Sci Technol 24:035022

    Article  Google Scholar 

  17. Tsuji M, Yamaguchi K, Nishimura Y (1988) Chem Phys 123:151–157

    Article  CAS  Google Scholar 

  18. Ridenti MA, Souza-Corrêa JA, Amorim J (2014) J Phys D Appl Phys 47:045204

    Article  Google Scholar 

  19. Foltin V, Leštinská L, Machala A (2006) Czech J Phys 56:B712–B720

    Article  Google Scholar 

  20. Amorim J, Ridenti MA, Guerra V (2015) Plasma Phys Control Fusion 57:074001

    Article  Google Scholar 

  21. Specair User Manual Version 3.0 (2012) SpectralFit, S.A.S. www.specair-radiation.net/manual.php. Accessed 13 April 2017

  22. Silva MLD, Vacher D, Duceck M, André P, Faure G (2008) Plasma Sources Sci Technol 17:035013

    Article  Google Scholar 

  23. Bazavan M, Iova I (2008) Rom Rep Phys 60:671–678

    CAS  Google Scholar 

  24. Herzberg GH (1950) Molecular spectra and molecular structure: I. Spectra of diatomic molecules, 2nd edn. Van Nostrand, New York

    Google Scholar 

  25. Michaud F, Roux F, Davis SP, Nguyen AD, Laux CO (2000) J Mol Spectrosc 203:1–8

    Article  CAS  Google Scholar 

  26. Prasad CVV, Bernath PF (1992) J Mol Spectrosc 156:340–372

    Article  Google Scholar 

  27. Silva MLD (2005) Guidelines for the calculation of bound molecular spectra. arXiv preprint physics/0509132

  28. Michaud F, Roux F, Davies SP, Nguyen AD (1996) Appl Opt 35:2867–2873

    Article  CAS  Google Scholar 

  29. Zare RN, Schmeltkoff AL, Harrop WJ, Albritton DL (1973) J Mol Spectrosc 46:37–66

    Article  Google Scholar 

  30. Brown JM, Colbourn EA, Watson JKG, Wayne FD (1979) J Mol Spectrosc 74:294–318

    Article  CAS  Google Scholar 

  31. Chauveau S, Perrin MY, Rivière P, Soufiani A (2002) J Quant Spectrosc Radiat Transf 72:503–530

    Article  CAS  Google Scholar 

  32. Roux F, Michaud F, Vervloet M (1993) J Mol Spectrosc 158:270–277

    Article  CAS  Google Scholar 

  33. Knowles PJ, Werner HJ, Hay PJ, Cartwright DC (1988) J Chem Phys 89:7334–7343

    Article  CAS  Google Scholar 

  34. Laux CO, Kruger CH (1992) J Quant Spectrosc Radiat Transf 48:9–24

    Article  CAS  Google Scholar 

  35. Ochkin VN (2009) Spectroscopy of Low temperature plasma. Wiley, Weinheim

    Book  Google Scholar 

  36. Lomax RG, Hans-Vaughn DL (2012) Statistical concepts: a second course, 4th edn. Taylor & Francis, Routledge

    Google Scholar 

  37. Levenberg D (1944) Q Appl Math 2:164–168

    Article  Google Scholar 

  38. Marquardt D (1963) SIAM J Appl Math 11:431–441

    Article  Google Scholar 

  39. Ridenti MA, Spyrou N, Amorim J (2014) J Chem Phys Lett 595–596:83–86

    Article  Google Scholar 

  40. Dünnbier M, Schmidt-Bleker A, Winter J, Wolfram M, Hippler R, Weltmann K-D, Reuter S (2013) J Phys D Appl Phys 46:435203

    Article  Google Scholar 

  41. Voráč J, Petr S, Potočňáková L, Hnilica J, Kudrle V (2017) Plasma Sources Sci Technol 26:025010

    Article  Google Scholar 

  42. Levaton J, Amorim J, Monna V, Nagai J, Ricard A (2004) Eur Phys J Appl Phys 26:59–64

    Article  CAS  Google Scholar 

  43. Ridenti MA, Souza-Corrêa JA, Amorim J (2016) J Phys Conf Ser 715:012003

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Amorim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ridenti, M.A., Amorim, J. CN (B 2Σ+ → X 2Σ+) Violet System in a Cold Atmospheric-Pressure Argon Plasma Jet. Plasma Chem Plasma Process 38, 311–329 (2018). https://doi.org/10.1007/s11090-017-9867-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-017-9867-x

Keywords

Navigation