Skip to main content
Log in

Hydrogen Peroxide Formation by Electric Discharge with Fine Bubbles

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Pulsed discharge plasma is typical oxidation technology for disposing organic compounds in aqueous solutions. When this electrical discharge plasma was applied in water, it may produce hydrogen peroxide (H2O2) without any catalyst or chemical agent. In order to increase H2O2 production by electrical discharge plasma in water, fine bubbles were introduced into the electrical discharge plasma in this experiment. Bipolar pulsed voltages were applied to cylindrical electrodes in the water while Ar or O2 bubbles were introduced, generating a pulsed discharge plasma. The introduction of the bubbles seemed to enhance the dissociation of water molecules and increased H2O2 formation, especially with O2 bubbling. Dissolved oxygen in the water contributed to H2O2 formation by pulsed discharge plasma with the bubbles, while dissociation of water molecules was the cause of H2O2 formation by pulsed discharge plasma without bubbles. More H2O2 was formed by pulsed discharge plasma with O2 bubbles, because the amount of dissolved oxygen in the water increased upon bubbling with O2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bratescu MA, Takai O, Saito N (2013) J Alloy Compd 562:74–83

    Article  CAS  Google Scholar 

  2. Hayashi Y, Wahyudiono, Machmudah S, Kanda H, Takada N, Sasaki K, Goto M (2013) Jpn J Appl Phys 52:11NE02

    Article  Google Scholar 

  3. Kolb JF, Mohamed AAH, Price RO, Swanson RJ, Bowman A, Chiavarini RL, Stacey M, Schoenbach KH (2008) Appl Phys Lett 92:241501

    Article  Google Scholar 

  4. Lee HW, Nam SH, Mohamed AAH, Kim GC, Lee JK (2010) Plasma Process Polym 7:274–280

    Article  CAS  Google Scholar 

  5. Tanaka H, Mizuno M, Ishikawa K, Nakamura K, Kajiyama H, Kano K, Kikkawa F, Hori M (2011) Plasma Med 1:265–277

    Article  Google Scholar 

  6. Takahata J, Takaki K, Satta N, Takahashi K, Fujio T, Sasaki Y (2015) Jpn J Appl Phys 54:01AG07

    Article  Google Scholar 

  7. Traylor MJ, Pavlovich MJ, Karim S, Hait P, Sakiyama Y, Clark DS, Graves DB (2011) J Phys D Appl Phys 44:472001

    Article  Google Scholar 

  8. Swartling P, Lindgren B (1968) J Dairy Res 35:423–428

    Article  Google Scholar 

  9. Kawamoto K, Tsujimoto Y (2004) J Endodo 30(1):45–50

    Article  Google Scholar 

  10. Meunier B, Sorokin A (1997) Acc Chem Res 30:470–476

    Article  CAS  Google Scholar 

  11. Jones CW (1999) Applications of hydrogen peroxide and derivatives. RSC publishing, UK

    Google Scholar 

  12. Locke BR, Thagard SM (2012) Plasma Chem Plasma Process 32:875–917

    Article  CAS  Google Scholar 

  13. Joshi AA, Locke BR, Arce P, Finney WC (1995) J Hazard Mater 41:3–30

    Article  CAS  Google Scholar 

  14. Reddy PMK, Raju BR, Karuppiah J, Reddy EL, Subrahmanyam C (2013) Chem Eng J 217:41–47

    Article  Google Scholar 

  15. Shih KY, Locke BR (2010) Plasma Chem Plasma Process 30:1–20

    Article  CAS  Google Scholar 

  16. Shih KY, Locke BR (2009) Plasma Process Polym 6:729–740

    Article  CAS  Google Scholar 

  17. Sun B, Sato M, Clements JS (1999) J Phys D Appl Phys 32:1908–1915

    Article  CAS  Google Scholar 

  18. Baroch P, Anita V, Saito N, Takai O (2008) J Electrost 66:294–299

    Article  CAS  Google Scholar 

  19. Anpilov AM, Barkhudarov EM, Bark YB, Zadiraka YV, Christofi M, Kozlov YN, Kossyi IA, Kopev VA, Silakov VP, Taktakishvilli MI, Temchin SM (2001) J Phys D Appl Phys 34:993–999

    Article  CAS  Google Scholar 

  20. Agarwal A, Ng WJ, Liu Y (2011) Chemosphere 84:1175–1180

    Article  CAS  Google Scholar 

  21. Takahashi M, Chiba K, Li P (2007) J Phys Chem B 111:1343–1347

    Article  CAS  Google Scholar 

  22. Hayashi Y, Takada N, Kanda H, Goto M (2015) Plasma Source Sci Technol 24:055023

    Article  Google Scholar 

  23. Kim HH, Teramoto Y, Hirakawa T, Negishi N, Ogata A (2013) IJEST 7:109–114

    Google Scholar 

  24. Vanraes P, Nikiforov A, Lessiak M, Leys C (2012) J Phys: Conf Ser 406:012013

    Google Scholar 

  25. Eisenberg GM (1943) Ind Eng Chem 15:5

    Google Scholar 

  26. Bruggeman P, Cunge G, Sadeghi N (2012) Plasma Sources Sci Technol 21:035019

    Article  Google Scholar 

  27. Nakashima T, Sakai S, Yamaguchi T, Yamamoto K, Yamada C, Kiyan T, Sakugawa T, Katsuki S, Akiyama H (2007) IEEE Trans Plasma Sci 35(3):614–618

    Article  Google Scholar 

  28. Ashkenazy J, Kipper R, Caner M (1991) Phys Rev 43(10):5568–5574

    Article  CAS  Google Scholar 

  29. Li OL, Takeuchi N, He Z, Guo Y, Yasuoka K, Chang JS, Saito N (2012) Plasma Chem Plasma Process 32:343–358

    Article  CAS  Google Scholar 

  30. Thagard SM, Takashima K, Mizuno A (2009) Plasma Chem Plasma Process 29:455–473

    Article  CAS  Google Scholar 

  31. Lam FLY, Hu X (2013) Ind Eng Chem Res 52:6639–6646

    Article  CAS  Google Scholar 

  32. Edita V, Zdenka K, Frantisek K, Ales H (2015) Open Chem 13:218–223

    Google Scholar 

  33. Ali AD, Dhia EAE, Ammar BA, Humaida AAO (2016) Environ Sci Pollut Res 23:3406–3413

    Article  Google Scholar 

  34. Sehgal C, Sutherland RG, Verrall RE (1980) J Phys Chem 84:388–395

    Article  CAS  Google Scholar 

  35. Akiyama H (2000) IEEE Trans Dielectr Electr Insul 7:646–653

    Article  CAS  Google Scholar 

  36. Aoqui S, Kawasaki H, Mitsugi F, Ohshima T, Sakai E, Muramoto I, Furukawa J, Stryczewska H D (2011) ISPC-20, Pennsylvania

  37. Wahyudiono, Machmudah S, Nagafuchi K, Sasaki M, Akiyama H, Goto M (2013) Trans Mat Res Soc Jpn 38(1):61–67

    Article  CAS  Google Scholar 

  38. Porter D, Poplin M D, Holzer F, Finney W C, Locke B R (2007) 42nd IAS Annual Meeting, Tallahassee

  39. Benetoli LOB, Cadorin BM, Postiglione CS, Souzaa IG, Debacher NA (2011) J Braz Chem Soc 22(9):1669–1678

    Article  CAS  Google Scholar 

  40. Locke RR, Shih KY (2011) Plasma Sources Sci Technol 20:034006

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motonobu Goto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayashi, Y., Takada, N., Wahyudiono et al. Hydrogen Peroxide Formation by Electric Discharge with Fine Bubbles. Plasma Chem Plasma Process 37, 125–135 (2017). https://doi.org/10.1007/s11090-016-9767-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-016-9767-5

Keywords

Navigation