Skip to main content
Log in

Matrix IR Study of Benzene Transformations in a Pulsed Glow Discharge in the Absence and the Presence of Oxygen

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Matrix FTIR study of products of benzene transformations in a pulsed glow discharge at low pressure in highly diluted mixtures of benzene with argon in the presence and absence of small oxygen additions has been carried out. Formation of the following hydrocarbon species has been established: acetylene, butadiyne, fulvene, benzvalene, methane, ethylene, phenyl, ethynyl and butadiynyl radicals. It has been shown that oxygen additions mainly result in deep oxidation of benzene to CO2, CO and H2O, although some products of intermediate oxidation have been detected. Those are formaldehyde, formyl radical, ketene, ketenyl radical, propadiene-1,3-dione, propadien-3-on-1-ilyden and hydroperoxyl radical. At the same time, it has unexpectedly been found that oxygen additions strongly increase the yield of butadiyne. Possible pathways, leading to formation of the listed species have been discussed on the basis of the obtained data and results reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Scheme 2

Similar content being viewed by others

References

  1. Fridman A (2008) Plasma chemistry. Cambridge University Press, New York

    Google Scholar 

  2. Meichsner J, Schmidt M, Schneider R, Wagner H-E (eds) (2012) Nonthermal plasma chemistry and physics. CRC Press, Boca Raton

    Google Scholar 

  3. Benedikt J (2010) Plasma–chemical reactions: low pressure acetylene plasmas. J Phys D Appl Phys 43:043001

    Google Scholar 

  4. Van Veldhuizen EM (ed) (2000) Electrical discharges for environmental purposes: fundamentals and applications. Nova Science Publishers, New York

    Google Scholar 

  5. Das TN, Dey GR (2013) Methane from benzene in argon dielectric barrier discharge. J Hazard Mat 248–249:469–477

    Google Scholar 

  6. Na N, Xia Y, Zhu Z, Zhang X, Cooks RG (2009) Birch reduction of benzene in a low-temperature plasma. Angew Chem Int Ed Engl 48:2017–2019

    CAS  Google Scholar 

  7. Zhang Z, Gong X, Zhang S, Yang H, Shi Y, Yang C, Zhang X, Xiong X, Fang X, Ouyang Z (2013) Observation of replacement of carbon in benzene with nitrogen in a low-temperature plasma. Sci Rep 3:3481

    Google Scholar 

  8. Kudryashov SV, Perevezentsev SA, Ryabov AY, Shchegoleva GS, Sirotkin EE (2012) Study of the products of benzene transformation in the presence of argon, hydrogen, and propane–butane mixture in barrier discharge. Petrol Chem 52:60–64

    CAS  Google Scholar 

  9. Perevezentsev SA, Kudryashov SV, Boganov SE, Ryabov AY, Shchegoleva GS (2011) Transformations of benzene–argon mixture in barrier discharge. High Energy Chem 45:62–65

    CAS  Google Scholar 

  10. Kudryashov SV, Ryabov AY, Shchegoleva GS (2013) Localized growth of materials from amorphous hydrogenated carbon by barrier-discharge treatment of benzene vapor–argon mixture. High Energy Chem 47:135–139

    CAS  Google Scholar 

  11. Guthe F, Ding H, Pino T, Maier JP (2001) Diagnosis of a benzene discharge with a mass-selective spectroscopic technique. Chem Phys 269:347–355

    CAS  Google Scholar 

  12. He L, Shen W, Sulkes M (2009) Early chemical intermediates following corona discharge on benzene derivatives: CH addition favored products. Chem Phys Lett 471:210–215

    CAS  Google Scholar 

  13. Liu J, Xiao Q, Wang L, Yao Z, Ding H (2009) Laser-ionization TOF mass spectrometer characterization of benzene destruction in atmospheric pressure pulsed discharge. Plasma Sci Technol 11:171–176

    CAS  Google Scholar 

  14. Liu JH, Wang LP, Xiao QM, Yao Z, Ding H (2010) Determinations of intermediate neutral species in hydrocarbon discharge plasma. Plasma Chem Plasma Process 30:349–361

    CAS  Google Scholar 

  15. Almond MJ, Wiltshire KS (2001) Matrix isolation. Annu Rep Prog Chem Sect C 97:3–60

    CAS  Google Scholar 

  16. Bally T (2004) In: Moss RA, Platz MS, Jones M (eds) Reactive intermediate chemistry. Wiley, Hoboken

    Google Scholar 

  17. Jacox ME (2002) The spectroscopy of molecular reaction intermediates trapped in the solid rare gases. Chem Soc Rev 31:108–115

    CAS  Google Scholar 

  18. Tevault DE (1985) Plasma reactions of methane in nitrogen and nitrogen/oxygen carriers by matrix isolation FTIR spectroscopy. Plasma Chem Plasma Process 5:369–390

    CAS  Google Scholar 

  19. Szczepanski J, Wang H, Jones B, Arrington CA, Vala MT (2005) Infrared absorption spectroscopy of diacetylene ions trapped in solid argon. Phys Chem Chem Phys 7:738–742

    CAS  Google Scholar 

  20. Pearce MP, Bussemaker MJ, Cooper PD, Lapere KM, Wild DA, McKinley AJ (2012) Formation of methanol from methane and water in an electrical discharge. Phys Chem Chem Phys 14:3444–3449

    CAS  Google Scholar 

  21. Bai H, Ault BS (1992) Matrix isolation study of the dissociation and isomerization pathways of benzene following corona discharge excitation. J Phys Chem 96:9169–9172

    CAS  Google Scholar 

  22. Miller JH, Andrews L, Lund PA, Schatz PN (1980) Argon matrix photolysis and photoionization studies of benzene. Absorption spectrum of benzene cation and benzene dimer cation. J Chem Phys 73:4932–4939

    CAS  Google Scholar 

  23. Murray A, Williams DL (1958) Organic syntheses with isotopes. Interscience Publishers, New York

    Google Scholar 

  24. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    CAS  Google Scholar 

  25. Laikov DN (2000) Development of an economical approach to the calculation of molecules based on the density functional theory and its application to solving complex chemical problems. PhD Thesis, Moscow State University, Department of Chemistry, Moscow (in Russian)

  26. Laikov DN, Ustynyuk YA (2005) PRIRODA 04: a quantum chemical program suite. New possibilities in the study of molecular systems with the application of parallel computing. Russ Chem Bull 54:820–826

    CAS  Google Scholar 

  27. Laikov DN (1997) Fast evaluation of density functional exchange-correlation terms using the expansion of the electron density in auxiliary basis sets. Chem Phys Lett 281:151–156

    CAS  Google Scholar 

  28. Andrews L, Johnson GL, Davis SR (1985) Infrared spectrum of the benzene-hydrogen fluoride complex in solid argon. J Phys Chem 89:1706–1709

    CAS  Google Scholar 

  29. Brown KG, Person WB (1978) Infrared spectrum of benzene isolated in argon and krypton matrices. Spectrochim Acta 34A:117–122

    CAS  Google Scholar 

  30. Spoliti M, Cesaro SN, Grosso V (1976) The i.r. spectrum of C6H6 and C6D6 in inert gas matrices at 15 K. Spectrochim Acta 32A:145–147

    CAS  Google Scholar 

  31. Engdahl A, Nelander B (1985) A matrix isolation study of the benzene–water interaction. J Phys Chem 89:2860–2864

    CAS  Google Scholar 

  32. Laboy JL, Ault BS (1993) 193 nm excimer laser photochemistry of benzene in argon matrices. J Photochem Photobiol A Chem 74:99–108

    CAS  Google Scholar 

  33. Perchard JP (2001) Anharmonicity and hydrogen bonding. III. Analysis of the near infrared spectrum of water trapped in argon matrix. Chem Phys 273:217–233

    CAS  Google Scholar 

  34. Schriver A, Schriver-Mazzuoli L, Vigasin AA (2000) Matrix isolation spectra of the carbon dioxide monomer and dimer revisited. Vib Spectrosc 23:83–94

    CAS  Google Scholar 

  35. Irvine MJ, Mathieson JC, Pullin AD (1982) The infrared matrix isolation spectra of carbon dioxide. II. Argon matrices: the CO2 monomer bands. Aust J Chem 35:1971–1977

    CAS  Google Scholar 

  36. Domaille PJ, Kent JE, O’ Dwyer MF (1974) Vibrational spectra of fulvene. Aust J Chem 27:2463–2466

    CAS  Google Scholar 

  37. Johnstone DE, Sodeau JR (1991) Matrix-controlled photochemistry of benzene and pyridine. J Phys Chem 95:165–169

    CAS  Google Scholar 

  38. Wheeless CJM, Zhou X, Liu R (1995) Density functional theory study of vibrational spectra. 2. Assignment of fundamental vibrational frequencies of fulvene. J Phys Chem 99:12488–12492

    CAS  Google Scholar 

  39. Anderson KB, Tranter RS, Tang W, Brezinsky K, Harding LB (2004) Speciation of C6H6 isomers by gas chromatography-matrix isolation Fourier transform infrared spectroscopy-mass spectrometry. J Phys Chem A 108:3403–3405

    CAS  Google Scholar 

  40. Griffith DWT, Kent JE, O’Dwyer MF (1975) The vibrational spectra of Dewar benzene and benzvalene. Aust J Chem 28:1397–1416

    CAS  Google Scholar 

  41. Jose KVJ, Gadre SR, Sundararajan K, Viswanathan KS (2007) Effect of matrix on IR frequencies of acetylene and acetylene-methanol complex: infrared matrix isolation and ab initio study. J Chem Phys 127:104501–104510

    Google Scholar 

  42. Suzert S, Andrews L (1989) Matrix infrared study of low-energy electron impact on hydrocarbons. J Phys Chem 93:2123–2129

    Google Scholar 

  43. Kline ES, Kafafi ZH, Hauge RH, Margrave JL (1987) FTIR matrix isolation studies of the reactions of atomic and diatomic nickel with acetylene in solid argon. The photosynthesis of nickel vinylidene. J Am Chem Soc 109:2402–2409

    CAS  Google Scholar 

  44. Manceron L, Andrews L (1985) Infrared spectrum of the lithium acetylene molecule in solid argon. J Am Chem Soc 107:563–568

    CAS  Google Scholar 

  45. Engdahl A, Nelander B (1983) The acetylene–water complex. A matrix isolation study. Chem Phys Lett 100:129–132

    CAS  Google Scholar 

  46. Bogdanskis NI, Bulanin MO, Fadeev YV (1970) Infrared spectra of acetylene in matrixes at low temperatures. I Opt Spectrosc 29:687–696

    Google Scholar 

  47. Hucknall DJ, Shepherd JV (1974) Infra-red spectra of monobromoethyne and some polyalkynes. Spectros Lett 7:381–384

    CAS  Google Scholar 

  48. Patten KO, Andrews L (1986) Infrared spectra of diacetylene–hydrogen fluoride complexes in solid argon. J Phys Chem 90:3910–3916

    CAS  Google Scholar 

  49. Rytter E, Gruen DM (1979) Infrared spectra of matrix isolated and solid ethylene. Formation of ethylene dimers. Spectrochim Acta 35A:199–207

    CAS  Google Scholar 

  50. Barnes AJ, Howells JDR (1973) Infra-red cryogenic studies. Part 12. Alkenes in argon matrices. J Chem Soc, Faraday Trans 2(69):532–539

    Google Scholar 

  51. Frayer FH, Ewing GE (1968) Nuclear-spin conversion and vibration-rotation spectra of methane in solid argon. J Chem Phys 48:781–792

    CAS  Google Scholar 

  52. Jones LH, Ekberg SA, Swanson BI (1986) Hindered rotation and site structure of methane in rare gas solids. J Chem Phys 85:3203–3210

    CAS  Google Scholar 

  53. Sodeau JR, Whyte LJ (1991) Oxidation of methylene in low-temperature matrices. J Chem Soc, Faraday Trans 87:3725–3730

    CAS  Google Scholar 

  54. Friderichsen AV, Radziszewski JG, Nimlos MR, Winter PR, Dayton DC, David DE, Ellison GB (2001) The infrared spectrum of the matrix-isolated phenyl radical. J Am Chem Soc 123:1977–1988

    CAS  Google Scholar 

  55. Shepherd RA, Graham WRM (1987) FTIR study of D and 13C substituted C2H in solid argon. J Chem Phys 86:2600–2605

    CAS  Google Scholar 

  56. Jacox ME, Olson WB (1987) The à 2Π-X 2Σ+ transition of HC2 isolated in solid argon. J Chem Phys 86:3134–3142

    CAS  Google Scholar 

  57. Maier G, Lautz C (1998) Laser irradiation of monomeric acetylene and the T-shaped acetylene dimer in xenon and argon matrices. Eur J Org Chem 5:769–776

    Google Scholar 

  58. Andrews L, Kushto GP, Zhou M, Willson SP, Souter PF (1999) Infrared spectrum of CCH+ in solid argon and neon. J Chem Phys 110:4457–4466

    CAS  Google Scholar 

  59. Shen LN, Doyle TJ, Graham W (1990) Fourier transform spectroscopy of C4H (butadiynyl) in Ar at 10 K: C–H and C≡C stretching modes. J Chem Phys 93:1597–1603

    CAS  Google Scholar 

  60. Bondybey VE, Pimentel GC (1972) Infrared absorptions of interstitial hydrogen atoms in solid argon and krypton. J Chem Phys 56:3832–3836

    CAS  Google Scholar 

  61. Milligan E, Jacox ME (1973) Infrared spectroscopic evidence for the stabilization of HArn+ in solid argon at 14 K. J Mol Spectrosc 46:460–469

    CAS  Google Scholar 

  62. Andrews L, Ault BS, Grzybowski JM, Allen RO (1975) Proton and deuteron radiolysis of argon matrix samples of O2 and Cl2. Infrared spectra of charged species. J Chem Phys 62:2461–2464

    CAS  Google Scholar 

  63. Suzer S, Andrews L (1988) Matrix isolation study of electron impact on H2O. Infrared spectrum of OH in solid argon. J Chem Phys 88:916–921

    CAS  Google Scholar 

  64. Fridgen TD, Parnis JM (1998) Electron bombardment matrix isolation of Rg/Rg′/methanol mixtures (Rg = Ar, Kr, Xe): Fourier-transform infrared characterization of the proton-bound dimers Kr2H+, Xe2H+, (ArHKr)+ and (ArHXe)+ in Ar matrices and (KrHXe)+ and Xe2H+ in Kr matrices. J Chem Phys 109:2155–2161

    CAS  Google Scholar 

  65. Thompson MGK, Parnis JM (2008) FTIR analysis of dimethyl ether decomposition products following charge transfer ionization with Ar+ under matrix isolation conditions. J Phys Chem A 112:12109–12116

    CAS  Google Scholar 

  66. Moore B, Pimentel GC (1963) Infrared spectrum and vibrational potential function of ketene and the deuterated ketenes. J Chem Phys 38:2816–2829

    CAS  Google Scholar 

  67. Hochstrasser R, Wirz J (1990) Reversible photoisomerization of ketene to ethynol. Angew Chem Int Ed Engl 29:411–413

    Google Scholar 

  68. Brown RD, Pullin DE, Rice EHN, Rodler M (1985) The infrared spectrum and force field of C3O. J Am Chem Soc 117:7877–7880

    Google Scholar 

  69. Botschwina P, Reisenauer HP (1991) C3O: ab initio calculations and matrix IR spectra. Chem Phys Lett 183:217–222

    CAS  Google Scholar 

  70. Milligan DE, Jacox ME (1969) Matrix-isolation study of the infrared and ultraviolet spectra of the free radical HCO. The hydrocarbon flame bands. J Chem Phys 51:277–288

    CAS  Google Scholar 

  71. Yang R, Yu L, Zeng A, Zhou M (2004) Infrared spectrum of the formylperoxy radical in solid argon. J Phys Chem A 108:4228–4231

    CAS  Google Scholar 

  72. Thompson MGK, White MR, Linford BD, King KA, Robinson MM, Parnisa JM (2011) Fourier transform infrared matrix-isolation analysis of acetaldehyde fragmentation products after charge exchange with Ar•+ under varied ionization density conditions. J Mass Spectrom 46:1071–1078

    CAS  Google Scholar 

  73. Ford TA (2006) The structures of some trimers of carbon monoxide—an infrared matrix isolation spectroscopic and ab initio molecular orbital study. Spectrochim Acta 64A:1151–1155

    CAS  Google Scholar 

  74. Abe H, Yamada KMT (2004) Spectroscopic identification of the CO–H2O 2–1 cluster trapped in an argon matrix. J Chem Phys 121:7803–7812

    CAS  Google Scholar 

  75. Jiang GJ, Person WB, Brown KG (1975) Absolute infrared intensities and band shapes in pure solid CO and CO in some solid matrices. J Chem Phys 62:1201–1211

    CAS  Google Scholar 

  76. Dubost H, Abouaf-Marguin L (1972) Infrared spectra of carbon monoxide trapped in solid argon. Double-dopping experiments with H2O, NH3 and N2. Chem Phys Lett 17:269–273

    CAS  Google Scholar 

  77. Pola J, Bakardjieva S, Marysko M, Vorlíček V, Šubrt J, Bastl Z, Galíková A, Ouchi A (2007) Laser-induced conversion of silica into nanosized carbon–polyoxocarbosilane composites. J Phys Chem C 111:16818–16826

    CAS  Google Scholar 

  78. Pola J, Ouchi A, Marysko M, Vorlíček V, Šubrt J, Bakardjieva S, Bastl Z (2011) UV laser photodeposition of nanomagnetic soot from gaseous benzene and acetonitrile–benzene mixture. J Photochem Photobiol A Chem 220:188–194

    CAS  Google Scholar 

  79. Ball DW, Pong RGS, Kafafi ZH (1994) Reactions of atomic and diatomic iron with methylacetylene in solid argon. J Phys Chem 98:10720–10727

    CAS  Google Scholar 

  80. Huang JW, Graham WRM (1990) Fourier transform infrared study of tricarbon hydride radicals trapped in Ar at 10 K. J Chem Phys 93:1583–1596

    CAS  Google Scholar 

  81. Georgieff KK, Cave WT, Blaikie KG (1954) Acetylene polymers: preparation, physical properties, infrared and ultraviolet spectra. J Am Chem Soc 76:5494–5499

    CAS  Google Scholar 

  82. Bjarnov E, Christensen DH, Nielsen OF, Augdahl E, Kloster-Jensen E, Rogstad A (1974) Vibrational spectra and force field of triacetylene. Spectrochim Acta 30A:1255–1262

    CAS  Google Scholar 

  83. Vaskonen KJ, Kunttu HM (2003) Photodissociation of formaldehyde in rare gas (Xe, Kr, Ar, and Ne) matrixes. J Phys Chem A 107:5881–5886

    CAS  Google Scholar 

  84. Forney D, Jacox ME, Thompson WE (1993) The vibrational spectra of molecular ions isolated in solid neon. X. H2O+, HDO+, and D2O+. J Chem Phys 98:841–849

    CAS  Google Scholar 

  85. Braithwaite NSJ (2000) Introduction to gas discharges. Plasma Sources Sci Technol 9:517–527

    CAS  Google Scholar 

  86. Yokoyama A, Zhao X, Hintsa EJ, Continetti RE, Lee YT (1990) Molecular beam studies of the photodissociation of benzene at 193 and 248 nm. J Chem Phys 92:4222–4233

    CAS  Google Scholar 

  87. Holland DMP, Shaw DA, Sumner I, Bowler MA, Mackie RA, Shpinkova LG, Cooper L, Rennie EE, Parker JE, Johnson CAF (2002) A time-of-flight mass spectrometry study of the fragmentation of valence shell ionised benzene. Int J Mass Spectrom 220:31–51

    CAS  Google Scholar 

  88. Bryce-Smith D, Gilbert A (1976) The organic photochemistry of benzene—I. Tetrahedron 32:1309–1326

    CAS  Google Scholar 

  89. Lias SG, Bartmess JE, Liebman JF, Holmes JL, Levin RD, Mallard WG (1988) Gas-phase ion and neutral thermochemistry. J Phys Chem Ref Data 1(17):1–861

    Google Scholar 

  90. Kislov VV, Nguyen TL, Mebel AM, Lin SH, Smith SC (2004) Photodissociation of benzene under collision-free conditions: an ab initio Rice-Ramsperger, Kassel–Marcus study. J Chem Phys 120:7008–7017

    CAS  Google Scholar 

  91. Janev RK, Reiter D (2004) Collision processes of C2,3Hy and C2,3Hy+ hydrocarbons with electrons and protons. Phys Plasmas 11:780–829

    CAS  Google Scholar 

  92. Laufer AH, Fahr A (2004) Reactions and kinetics of unsaturated C-2 hydrocarbon radicals. Chem Rev 104:2813–2832

    CAS  Google Scholar 

  93. Hsu TC, Shu J, Chen Y, Lin JJ, Lee YT, Yang X (2001) Dissociation rates of benzene at VUV excitation. J Chem Phys 115:9623–9626

    CAS  Google Scholar 

  94. Kovács T, Blitz MA, Seakins PW, Pilling MJ (2009) H atom formation from benzene and toluene photoexcitation at 248 nm. J Chem Phys 131:204304

    Google Scholar 

  95. Sekiguchi H, Ando M, Kojima H (2005) Study of hydroxylation of benzene and toluene using a micro-DBD plasma reactor. J Phys D Appl Phys 38:1722–1727

    CAS  Google Scholar 

  96. Ascenzi D, Franceschi P, Guella G, Tosi P (2006) Phenol production in benzene/air plasmas at atmospheric pressure. Role of radical and ionic routes. J Phys Chem A 110:7841–7847

    CAS  Google Scholar 

  97. Dey GR, Sharma A, Pushpa KK, Das TN (2010) Variable products in dielectric-barrier discharge assisted benzene oxidation. J Hazard Mat 178:693–698

    CAS  Google Scholar 

  98. Ye ZL, Shen Y, Zhang RX, Hou HQ (2008) Destruction of benzene in an air stream by the outer combined plasma photolysis method. J Phys D Appl Phys 41:025201

    Google Scholar 

  99. Li J, Bai S-P, Shi X-C, Han S-L, Zhu X-M, Chen W-C, Pu Y-K (2008) Effects of temperature on benzene oxidation in dielectric barrier discharges. Plasma Chem Plasma Process 28:39–48

    Google Scholar 

  100. Khoshkhoo H, Nixon ER (1973) Infrared and Raman spectra of formaldehyde in argon and nitrogen matrices. Spectrochim Acta 29A:603–612

    Google Scholar 

  101. Tso T-L, Lee EKC (1984) Photochemical yields and FTIR spectra of matrix-isolated, isotopic organic products formed in the photooxldation of isotopic formaldehydes in solid O2 at 12–15 K. J Phys Chem 88:5475–5482

    CAS  Google Scholar 

  102. Piétri N, Tamburelli I, Aycard J-P, Chiavassa T (1997) Fourier transform IR spectrum and photoreactivity of the C3O2: HCl complex isolated in solid argon. J Mol Struct 416:187–195

    Google Scholar 

  103. Piétri N, Chiavassa T, Allouche A, Aycard J-P (1997) IR structural identification of oxocumulene-HCl complexes generated in cryogenic matrixes. The product-like transition state of the corresponding electrophilic addition. J Phys Chem A 101:1093–1098

    Google Scholar 

  104. Redington RL, Milligan DE (1962) Infrared spectroscopic evidence for the rotation of the water molecule in solid argon. J Chem Phys 37:2162–2166

    CAS  Google Scholar 

  105. Redington RL, Milligan DE (1963) Molecular rotation and ortho-para nuclear spin conversion of water suspended in solid Ar, Kr, and Xe. J Chem Phys 39:1276–1284

    CAS  Google Scholar 

  106. Ayers GP, Pullin ADE (1976) The i.r. spectra of matrix isolated water species—I. Assignment of bands to (H2O)2, (D2O)2 and HDO dimer species in argon matrices. Spectrochim Acta 32A:1629–1639

    CAS  Google Scholar 

  107. Nelander B (1980) Infrared spectrum of the water formaldehyde complex in solid argon and solid nitrogen. J Chem Phys 72:77–84

    CAS  Google Scholar 

  108. Gómez Castaño JA, Fantoni A, Romano RM (2008) Matrix-isolation FTIR study of carbon dioxide: reinvestigation of the CO2 dimer and CO2–N2 complex. J Mol Struct 881:68–75

    Google Scholar 

  109. Michaut X, Vasserot AM, Abouaf-Marguin L (2003) The vibration–rotation of H2O and its complexation with CO2 in solid argon revisited. Low Temp Phys 29:852–857

    CAS  Google Scholar 

  110. Smith DW, Andrews L (1974) Argon matrix infrared spectra and vibrational analysis of the hydroperoxyl and deuteroperoxyl free radicals. J Chem Phys 60:81–85

    CAS  Google Scholar 

  111. Chertihin GV, Andrews L (1998) On the spectrum and structure of the isolated O4 anion in solid argon. J Chem Phys 108:6404–6407

    CAS  Google Scholar 

  112. Andrews L, Spiker RC (1972) Argon matrix Raman and infrared spectra and vibrational analysis of ozone and oxygen-18 substituted ozone molecules. J Phys Chem 76:3208–3213

    CAS  Google Scholar 

  113. Bahou M, Schriver-Mazzuoli L, Schriver A (2001) Infrared spectroscopy and photochemistry at 266 nm of the ozone dimer trapped in an argon matrix. J Chem Phys 114:4045–4052

    CAS  Google Scholar 

  114. Schriver-Mazzuoli L, de Saxcé A, Lugez C, CamyPeyret C, Schriver A (1995) Ozone generation through photolysis of an oxygen matrix at 11 K: Fourier transform infrared spectroscopy identification of the O···O3 complex and isotopic studies. J Chem Phys 102:690–701

    CAS  Google Scholar 

  115. Svensson T, Nelander B (2000) The HOO complex with N2 and CO in argon matrices. Chem Phys 262:445–452

    CAS  Google Scholar 

  116. Thompson WE, Jacox ME (1989) The vibrational spectra of molecular ions isolated in solid neon. II. O4 + and O4 . J Chem Phys 91:3826–3837

    CAS  Google Scholar 

  117. Misochko EY, Akimov AV, Goldshleger IU (2003) Modern applications of matrix isolation technique to investigation of radical species generated in atom–molecular chemical reactions. Russ Chem Rev 72:233–255

    CAS  Google Scholar 

  118. Satoh K, Matsuzawa T, Itoh H (2008) Decomposition of benzene in a corona discharge at atmospheric pressure. Thin Solid Films 516:4423–4429

    CAS  Google Scholar 

  119. Fernandes RX, Luther K, Troe J, Ushakov VG (2008) Experimental and modelling study of the recombination reaction H + O2 (+M) − > HO2 (+M) between 300 and 900 K, 1.5 and 950 bar, and in the bath gases M = He, Ar, and N2. Phys Chem Chem Phys 10:4313–4321

    CAS  Google Scholar 

  120. Jain C, Parker AE, Schoemaecker C, Fittschen C (2010) HO2 Formation from the photoexcitation of benzene/O2 mixtures at 248 nm: an energy dependence study. Chem Phys Chem 11:3867–3873

    CAS  Google Scholar 

  121. Zhou M, Hacaloglu J, Andrews L (1999) Infrared spectra of cyclic-O6+ and trans-O6+ in solid neon and argon. J Chem Phys 110:9450–9456

    CAS  Google Scholar 

  122. Parker JK, Davis SR (1999) Photochemical reaction of ozone and benzene: an infrared matrix isolation study. J Am Chem Soc 121:4271–4277

    CAS  Google Scholar 

  123. Baulch DL, Cobos CJ, Cox RA, Frank P, Hayman G, Just T, Kerr JA, Murrells T, Pilling MJ, Troe J, Walker RW, Warnatz J (1994) Evaluated kinetic data for combustion modeling. Supplement I. J Phys Chem Ref Data 23:847–1033

    CAS  Google Scholar 

  124. Zhang Y, Oliver TAA, Ashfold MNR, Bradforth SE (2012) Contrasting the excited state reaction pathways of phenol and para-methylthiophenol in the gas and liquid phases. Faraday Discuss 157:141–163

    CAS  Google Scholar 

  125. Le HT, Flammang R, Gerbaux P, Bouchoux G, Nguyen MT (2001) Ionized phenol and its isomers in the gas phase. J Phys Chem A 105:11582–11592

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Council on Grants at the President of the Russian Federation (Program of State Support for Leading Scientific Schools of the Russian Federation, Grant NSh-1310.2014.3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey E. Boganov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boganov, S.E., Kudryashov, S.V., Ryabov, A.Y. et al. Matrix IR Study of Benzene Transformations in a Pulsed Glow Discharge in the Absence and the Presence of Oxygen. Plasma Chem Plasma Process 34, 1345–1370 (2014). https://doi.org/10.1007/s11090-014-9576-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-014-9576-7

Keywords

Navigation