Skip to main content

Advertisement

Log in

The Corrosion of an Amorphous Fe70C10P10B5Mo5 Alloy in Various CO2/CO Mixed Gases at 500 °C

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The corrosion behavior of an Fe70C10P10B5Mo5 amorphous ribbon was investigated in various CO2/CO mixed gases within the oxygen partial pressure range 7.2 × 10−24 to 7.2 × 10−22 Pa at 500 °C. In general, the amorphous alloy exhibited exclusive oxidation throughout the study, and its oxidation kinetics followed the parabolic rate law. The parabolic rate constants steadily increased with increasing oxygen pressure, indicating a typical scaling behavior for p-type semiconductivity. The scale formed on the glassy alloy consisted mostly of Fe3O4 and a minor amount of B2O3, and the formation of B2O3 is responsible for the lower scaling rate of the glassy alloy as compared with that of pure Fe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Inoue, Engineering 1, 2015 (185).

    Article  Google Scholar 

  2. A. Inoue, F. L. Kong, S. L. Zhu, E. Shalaan and F. M. Al-Marzouki, Intermetallics 58, 2015 (20).

    Article  Google Scholar 

  3. A. Inoue and F. L. Kong, Bulk metallic glasses: formation and applications, (Reference Module in Mater. Sci & Mater. Eng. Elsevier Inc., Amsterdam, 2016), pp. 1–10.

    Google Scholar 

  4. A. Inoue and A. Takeuchi, Acta Mater. 59, 2011 (2243).

    Article  Google Scholar 

  5. A. Inoue, B. L. Shen and A. Takeuchi, Mater. Trans. JIM 47, 2006 (1275).

    Article  Google Scholar 

  6. C. Suryanarayana and A. Inoue, Bulk Glassy Alloys, 2nd edn. (CRC Press, Taylor & Francis Inc., New York US, 2017).

  7. A. Inoue, B. L. Shen, A. R. Yavari and A. L. Greer, J. Mater. Res. 18, 2003 (1487).

    Article  Google Scholar 

  8. A. Inoue, B. L. Shen and C. T. Chang, Acta Mater. 52, 2004 (4093).

    Article  Google Scholar 

  9. W. Zhang, C. Fang and Y. Li, Scripta Mater. 69, 2013 (77).

    Article  Google Scholar 

  10. W. Kai, F. P. Cheng, Y. T. Chen, R. T. Huang, H. H. Huang and W. Zhang, J. Alloy & Compd. 763, 2018 (209).

    Article  Google Scholar 

  11. W. Kai, I. F. Ren, P. C. Kao, R. T. Huang and C. T. Liu, Intermetallics 17, 2009 (205).

    Article  Google Scholar 

  12. H. H. Hsieh, W. Kai, R. T. Huang, C. Y. Lin and T. S. Chin, Intermetallics 14, 2006 (917).

    Article  Google Scholar 

  13. W. Kai, Y. H. Wu, W. S. Chen, L. W. Tsay, H. L. Jia and P. K. Liaw, Corros. Sci. 66, 2013 (26).

    Article  Google Scholar 

  14. K. Aoki, T. Masumoto and C. Suryanarayana, J. Mat. Sci. 21, 1986 (793).

    Article  Google Scholar 

  15. S. Leistikow, I. Wolf and H. J. Grabke, Werkst. Korros. 38, 1987 (556).

    Article  Google Scholar 

  16. D. R. Gaskell, Introduction to Metallurgical Thermodynamics, 5th edn. (Taylor & Francis, New York/London, p. 582, 2008).

  17. J. A. Colwell and R. A. Rapp, Met. Trans. A 17A, 1986 (1065).

    Article  Google Scholar 

  18. ASTM Standard G54-84, ASTM, USA, 1991, p. 199.

  19. W. Kai, Y.-H. Wu, W. S. Chen, R. T. Huang, H. Jia, P. K. Liaw and T. Zhang, Met. Trans. A 43A, 2012 (2721).

    Article  Google Scholar 

  20. W. Kai, P. C. Kao, W. S. Chen, C. L. Lin, Z. H. Xiao, C. F. Hsu and P. Y. Lee, J. Alloy & Compd. 504S, 2010 (S180).

    Article  Google Scholar 

  21. N. Birks, G. H. Meier and F. S. Pettit, Introduction to High Temperature Oxidation of Metals, (Edward Arnold, London, 2003).

    Google Scholar 

  22. P. L. Surman, Corros. Sci. 13, 1973 (825).

    Article  Google Scholar 

  23. I. Barin, Thermodynamic Data for Pure Substance, 3rd edn. (American Chemical Society and American Institute of Physics for National Bureau of Standards, VCH, Weinheim, Germany, 1995).

  24. P. Kofstad, Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides, (Wiley, New York US, 1972).

    Google Scholar 

  25. J. C. Slater, J. Chem. Phys. 41, 1972 (3199).

    Article  Google Scholar 

  26. J. P. Viricelle, P. Goursat and D. Bahloul-Hourlier, J. Thermal Analysis & Calorimetry 64, 2001 (507).

    Google Scholar 

Download references

Acknowledgements

The authors are thankful for the partly financial support by the Ministry of Science and Technology of the Republic of China under the Grant Nos. MOST-103-2221-E-019-007-MY2 and MOST-106-2221-E-019-003 and the Atomic Energy Council of the Republic of China under the Grant Nos. AEC10501002L. Special gratitude is due to Mr. C.T. Wu in the Department of System Engineering and Science, National Tsing Hua University (Hsin-Chu, Taiwan), for his TEM sample preparation. The SEM equipment support from the National Taiwan Ocean University under Grant No. NTOU-AP94-04-03-01-01 is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Kai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kai, W., Cheng, F.P., Chen, Y.T. et al. The Corrosion of an Amorphous Fe70C10P10B5Mo5 Alloy in Various CO2/CO Mixed Gases at 500 °C. Oxid Met 91, 437–449 (2019). https://doi.org/10.1007/s11085-019-09904-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-019-09904-2

Keywords

Navigation